• Title/Summary/Keyword: oxidation characterization

Search Result 404, Processing Time 0.023 seconds

Yield and Characterization of Various Biodiesel from Vegetable Oils and Animal Fats (동·식물성 유지를 이용한 바이오디젤 생산에 관한 연구)

  • Lee, Tae-Sung;Lee, Yong-Hwa;Kim, Kwang-Soo;Kim, Wook;Kim, Kwan-Su;Jang, Young-Seok;Park, Kwang-Geun
    • New & Renewable Energy
    • /
    • v.8 no.4
    • /
    • pp.30-37
    • /
    • 2012
  • Biodiesel was produced by "transesterification" of vegetable oils and animal fats as an alternative to petroleum diesel. The research analysed the fuel characteristics of biodiesel, the yield of by-products and biodiesel, using several vegetable oils - rapeseed oil, camellia oil, peanut oil, sesame oil, perilla oil, palm oil, olive oil, soybean oil, sunflower oil and animal fats such as lard, tallow, and chicken fat. The results showed the yields of biodiesel made from the vegetable oils and animal fats were $90.8{\pm}1.4{\sim}96.4{\pm}0.9%$ and $84.9{\pm}1.1{\sim}89.6{\pm}1.5%$ respectively. Production rates and oxidation characteristics were different depending on the fats applied.

Physio-chemical and Mineralogical Characterization of the Tailings in the Guryoung Mining Area (구룡광산 광미층의 심도변화에 따른 물리.화학적 및 광물학적 특성)

  • Moon, Yong-Hee;Kim, Jeong-Yeon;Song, Yun-Goo;Moon, Hi-Soo
    • Economic and Environmental Geology
    • /
    • v.41 no.2
    • /
    • pp.183-199
    • /
    • 2008
  • This study is focused on characterization of the physio-chemical and mineralogical properties, investigation of their vertical changes in the tailing profile of the Guryoung mining area, classification of the profile into distinct zones, and condition conceptual model of physio-chemical conditions and phases-water relationships controlling the element behaviors in the tailings. The upper part of the groundwater is characterized by the high contents of $Fe_2O_3$ and $SO_3$ for whole rock analysis, low pH, and the occurrence of jarosite, schwertmannite and Fe-oxyhydroxide as the secondary mineral phases. The tailing profile can be divided into the covering soil, jarosite zone, Fe-sulfate zone, Fe-oxyhydroxide and gypsum-bearing pyrite zone, calcite-bearing pyrite zone, soil zone, and weathered zone on the based of the geochemical and mineralogical characteristics. The profile can be sampled into the oxidized zone and the carbonate-rich primary zone with the dramatic changes in pH and the secondary mineral phases. The conceptual model proposed for the tailing profile can be summarized that the oxidation of pyrite is the most important reaction controlling the changes in pH, the dissolution of the primary silicates and carbonates, the precipitation of secondary mineral phases, acid-neutralizing, and heavy metal behaviors through the profile.

Biochemical Characterization of the Dual Positional Specific Maize Lipoxygenase and the Dependence of Lagging and Initial Burst Phenomenon on pH, Substrate, and Detergent during Pre-steady State Kinetics

  • Cho, Kyoung-Won;Jang, Sung-Kuk;Huon, Thavrak;Park, Sang-Wook;Han, Ok-Soo
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.100-106
    • /
    • 2007
  • The wound-inducible lipoxygenase obtained from maize is one of the nontraditional lipoxygenases that possess dual positional specificity. In this paper, we provide our results on the determination and comparison of the kinetic constants of the maize lipoxygenase, with or without detergents in the steady state, and characterization of the dependence of the kinetic lag phase or initial burst, on pH, substrate, and detergent in the pre-steady state of the lipoxygenase reaction. The oxidation of linoleic acid showed a typical lag phase in the pre-steady state of the lipoxygenase reaction at pH 7.5 in the presence of 0.25% Tween-20 detergent. The reciprocal correlation between the induction period and the enzyme level indicated that this lag phenomenon was attributable to the slow oxidative activation of Fe (II) to Fe (III) at the active site of the enzyme as observed in other lipoxygenase reactions. Contrary to the lagging phenomenon observed at pH 7.5 in the presence of Tween-20, a unique initial burst was observed at pH 6.2 in the absence of detergents. To our knowledge, the initial burst in the oxidation of linoleic acid at pH 6.2 is the first observation in the lipoxygenase reaction. Kinetic constants (Km and kcat values) were largely dependent on the presence of detergent. An inverse correlation of the initial burst period with enzyme levels and interpretations on kinetic constants suggested that the observed initial burst in the oxidation of linoleic acid could be due to the availability of free fatty acids as substrates for binding with the lipoxygenase enzyme.

Synthesis and Characterization of CNT / TiO2 Photoelectrocatalytic Electrodes for Methlene Blue Degradation

  • Zhang, Feng-Jun;Chen, Ming-Liang;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.583-591
    • /
    • 2008
  • In this study, two series of CNT/$TiO_2$ electrodes were prepared. The decrease of surface area compared with that of the pristine carbon nanotubes (CNTs) indicated the blocking of micropores on the surface of the CNTs; was further supported by scanning electron microscopy (SEM) and field emission SEM (FE-SEM) observations. The X-ray diffraction (XRD) results showed that the CNT/$TiO_2$ composites contained a mix of anatase and rutile forms of $TiO_2$ particles when the precursor was $TiO_2$ powder, whereas when the precursor was Ti ($OC_4H_7$) (TNB), the composites contained only the typical single and clear anatase $TiO_2$ particles. The energy dispersive X-ray spectroscopy (EDX) spectra showed the presence of C, O and Ti peaks for all samples. It was found that catalytic decomposition of methylene blue (MB) solution could be attributed to synthetic effects between the $TiO_2$ photocatalysis and electro-assisted CNTs network, and that photoelectrocatalytic oxidation increased with an increase of CNT composition. It was also found that the photoelectrocatalytic oxidation efficiency for MB is higher than that of photocatalytic oxidation. Moreover, the CNT/$TiO_2$ composites catalyst prepared by the impregnation method demonstrates higher photoelectrocatalytic activity than the mechanical mixture with the same CNT content.

Characterization of Methanotrophic Communities in Soils from Regions with Different Environmental Settings (다양한 환경조건을 가진 토양의 메탄산화세균 군집 특성)

  • Kim, Tae-Gwan;Park, Hyun-Jung;Lee, Sang-Hyon;Kim, Pyeong-Wha;Moon, Kyung-Eun;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.152-156
    • /
    • 2012
  • Methanotrophic communities from freshwater wetland (FW), seawater wetland (SW), forest (FS), and landfill soils (LS) around Seoul of South Korea, were characterized using comparative sequence analyses of clone libraries. Proportions of Methylocaldum, Methlyococcus and Methylosinus were found to be greater in FW and SW, while Methylobacter and Methylomonas were more notable in FS and Methylocystis and Methylomicrobium more prominent in LS. Lag periods behind the initiation of methane oxidation significantly varied amongst the soils. Methane oxidation rates were greater in $FW{\geq}LS{\geq}SW>FS$ (p<0.05). Thus, the environmental setting is a significant factor influencing the communities and capabilities of methanotrophs.

Removal of As(III) and As(V) in Aqueous Phases by Fe and Mn Oxides Coated Granular Activated Carbon (철 및 망간 산화물로 코팅된 입자활성탄을 이용한 수용액 중 As(III) 및 As(V)의 제거)

  • Lee, Hee-Yong;Yang, Jung-Seok;Choi, Jae-Young;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.619-626
    • /
    • 2009
  • The objective of this study was to evaluate the efficiency of Fe and Mn oxides coated granular activated carbons (FMOCGs) for the removal of arsenite and arsenate by oxidation and adsorption mechanisms using surface characterization and batch adsorption experiments. Within four manufactured adsorbents, Fe and Mn contents of FMOCG-1 was the highest (178.12 mg Fe/g and 11.25 mg Mn/g). In kinetic results, As(III) was removed by oxidation and adsorption with FMOCGs. Removal of arsenic by FMOCGs increased as pH value of the solution decreased. The adsorption isotherm results were well fitted with Langmuir isotherm. Adsorption amount of As(V) onto FMOCGs was higher than that of As(III) and the maximum adsorption capacities of FMOCGs for As(III) and As(V) were 1.38~8.44 mg/g and 2.91~9.63 mg/g, respectively.

Purification and Characterization of a Cyclohexanol Dehydrogenase from Rhodococcus sp. TK6

  • Kim, Tae-Kang;Choi, Jun-Ho;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.39-45
    • /
    • 2002
  • Activity staining on the native polyacrylamide gel electrophoresis (PAGE) of a cell-free extract of Rhodococcus sp. TK6, grown in media containing alcohols as the carbon source, revealed at least seven isozyme bands, which were identified as alcohol dehydrogenases that oxidize cyclohexanol to cyclohexanone. Among the alcohol dehydrogenases, cyclohexanol dehydrogenase II (CDH II), which is the major enzyme involved in the oxidation of cyclohexanol, was purified to homogeneity. The molecular mass of the CDH II was determined to be 60 kDa by gel filtration, while the molecular mass of each subunit was estimated to be 28 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The CDH II was unstable in acidic and basic pHs, and rapidly inactivated at temperatures above $40^{\circ}C$ . The CDH II activity was enhanced by the addition of divalent metal ions, like $Ba^2+\;and\;Mg^{2+}$. The purified enzyme catalyzed the oxidation of a broad range of alcohols, including cyclohexanol, trans-cyclohexane-1,2-diol, trans-cyclopentane-l,2-diol, cyclopentanol, and hexane-1,2-diol. The $K_m$ values of the CDH II for cyclohexanol, trans-cyclohexane-l,2-diol, cyclopentanol, trans-cyclopentane-l,2-diol, and hexane-l,2-diol were 1.7, 2.8, 14.2, 13.7, and 13.5 mM, respectively. The CDH II would appear to be a major alcohol dehydrogenase for the oxidation of cyclohexanol. The N-terminal sequence of the CDH II was determined to be TVAHVTGAARGIGRA. Furthermore, based on a comparison of the determined sequence with other short chain alcohol dehydrogenases, the purified CDH II was suggested to be a new enzyme.

Carbamate-Based Surface Reactions for Release of Amine Molecules from Electroactive Self-Assembled Monolayers

  • Hong, Dae-Wha;Kang, Kyung-Tae;Hong, Seok-Pyo;Shon, Hyun-Kyong;Lee, Tae-Geol;Choi, In-Sung S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.208-209
    • /
    • 2011
  • In this work, we developed self-assembled monolayers (SAMs) of alkanethiols on gold that can release amine groups, when an electrical potential was applied to the gold. The strategy was based on the introduction of the electroactive carbamate group, which underwent the two-electron oxidation with simultaneous release of the amine molecules, to alkanethiols. The synthesis of the designed thiol compounds was achieved by coupling isocyanate-containing compound with hydroquinone. The electroactive thiols were mixed with hydroxyl-containing alkanethiol [$HS(CH_2)_{11}OH$] to form mixed monolayers, and cyclic votammetry was used for the characterization of the release. The mixed SAMs showed a first oxidation peak at +540 mV (versus Ag/AgCl reference electrode), demonstrating irreversible conversion from carbamate to hydroqinone with simultaneous release of the amine groups. The second and third cycles showed typical reversible redox reaction of hydroquinone and quione: the oxidation and reduction occurred at +290 mV and -110 mV, respectively. The measurement of ToF-SIMS further indicates that electrochemical-assisted chemical reaction successfully released amine groups. This new SAM-based electrochemistry would be applicable for direct release of biologically active molecules that contain amine groups.

  • PDF

The Effect of Liquid Medium on Silicon Grinding and Oxidation during Wet Grinding Process (습식분쇄공정에서 액상매체가 실리콘 분쇄 및 산화특성에 미치는 영향)

  • Kwon, Woo Teck;Kim, Soo Ryong;Kim, Young Hee;Lee, Yoon Joo;Shin, Dong Geun;Won, Ji Yeon;Oh, Sea Cheon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.2
    • /
    • pp.121-126
    • /
    • 2014
  • The influence of a liquid medium duringa wet-milling process in the grinding and oxidation of silicon powder was investigated. Distilled water, dehydrated ethanol and diethylene glycol were used as the liquid media. The applied grinding times were 0.5, 3, and 12 h. Ground silicon powder samples were characterized by means of aparticle size analysis, scanning electron microscopy(SEM), x-ray powder diffraction (XRD), FT-IR spectroscopy and by a chemical composition analysis. From the results of the characterization process, we found that diethylene glycol is the most efficient liquid medium when silicon powder is ground using a wet-milling process. The FT-IR results show that the Si-O band intensity in an unground silicon powder is quite strongbecause oxygen becomes incorporated with silicon to form $SiO_2$ in air. By applying deionized water as a liquid medium for the grinding of silicon, the $SiO_2$ content increased from 4.12% to 31.7%. However, in the cases of dehydrated ethanol and diethylene glycol, it was found that the $SiO_2$ contents after grinding only changed insignificantly, from 4.12% to 5.91% and 5.28%, respectively.

Fabrication and Characterization of C/SiC Composite by Electron Beam Curing (전자선 가교 방법을 이용한 탄소/탄화규소 복합재 제조 및 특성)

  • Shin, Jin-Wook;Jeun, Joon-Pyo;Kang, Phil-Hyun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.575-580
    • /
    • 2009
  • Carbon fabric-reinforced silicon carbide composites (C/SiC) have attracted a considerable attention for high temperature structural application because of their outstanding oxidation resistance property and thermal shock resistance. In this study, we reported on the preparation of C/SiC composites by the polymer impregnation and pyrolysis (PIP) method. For this, polycarbosilane solution was impregnated into the carbon fabric and then cured by electron beam irradiation under argon atmosphere. Afterwards, the cured composite was pyrolyzed at $1300^{\circ}C$ for 1 h under argon atmosphere to produce the C/SiC composite. The porosity and density of the C/SiC composite were 13.5% and $2.44\;g/cm^3$, respectively, when the impregnation of the carbon fabric with the 30 wt% polycarbosilane solution conducted four times. In addition, in the isothermal experiment at $1500\;^{\circ}C$ in air for 5 h, the 95.9 wt% of the C/SiC composite was remained, indicating that the prepared C/SiC composite has a outstanding oxidation resistance.