Browse > Article
http://dx.doi.org/10.4014/kjmb.1202.02001

Characterization of Methanotrophic Communities in Soils from Regions with Different Environmental Settings  

Kim, Tae-Gwan (Department of Environmental Science and Engineering, Ewha Womans University)
Park, Hyun-Jung (Department of Environmental Science and Engineering, Ewha Womans University)
Lee, Sang-Hyon (Department of Environmental Science and Engineering, Ewha Womans University)
Kim, Pyeong-Wha (Department of Environmental Science and Engineering, Ewha Womans University)
Moon, Kyung-Eun (Department of Environmental Science and Engineering, Ewha Womans University)
Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
Publication Information
Microbiology and Biotechnology Letters / v.40, no.2, 2012 , pp. 152-156 More about this Journal
Abstract
Methanotrophic communities from freshwater wetland (FW), seawater wetland (SW), forest (FS), and landfill soils (LS) around Seoul of South Korea, were characterized using comparative sequence analyses of clone libraries. Proportions of Methylocaldum, Methlyococcus and Methylosinus were found to be greater in FW and SW, while Methylobacter and Methylomonas were more notable in FS and Methylocystis and Methylomicrobium more prominent in LS. Lag periods behind the initiation of methane oxidation significantly varied amongst the soils. Methane oxidation rates were greater in $FW{\geq}LS{\geq}SW>FS$ (p<0.05). Thus, the environmental setting is a significant factor influencing the communities and capabilities of methanotrophs.
Keywords
Methanotrophs; clone library; environmental setting; methane oxidation potential;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bender, M., R. Conrad. 1992. Kinetics of $CH_4$ oxidation in oxic soils exposed to ambient air or high $CH_4$ mixing ratios. FEMS Microbiol. Lett. 101: 261-269.
2 Chen, Y., M. G. Dumont, A. Cebron, J. C. Murrell. 2007. Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes. Environ. Microbiol. 9: 2855-2869.   DOI
3 Costello, A. M., A. J. Auman, J. L. Macalady, K. M. Scow, M. E. Lidstrom. 2002. Estimation of methanotroph abundance in a freshwater lake sediment. Environ. Microbiol. 4: 443-450.   DOI
4 Gebert, J., B. K. Singh, Y. Pan, L. Bodrossy. 2009. Activity and structure of methanotrophic communities in landfill cover soils. Environ. Microbiol. Rep. 1: 414-423.   DOI
5 Gee, G. W., J. W. Bauer. 1986. Particle-size analysis, pp. 383-411 In A. Klute (Ed.) Methods of soil analysis, ASA and SSSA, Madison, WI.
6 Henckel, T., P. Roslev, R. Conrad. 2000. Effects of $O_2$ and $CH_4$ on presence and activity of the indigenous methanotrophic community in rice field soil. Environ. Microbiol. 2: 666-679.   DOI
7 Holmes, A. J., P. Roslev, I. R. McDonald, N. Iversen, K. Henriksen, J. C. Murrell. 1999. Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl. Environ. Microbiol. 65: 3312-3318.
8 Kettler, T. A., J. W. Doran, T. L. Gilbert. 2001. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 65: 849-852.   DOI
9 Knief, C., P. F. Dunfield. 2005. Response and adaptation of different methanotrophic bacteria to low methane mixing ratios. Environ. Microbiol. 7: 1307-1317.   DOI
10 Knief, C., S. Kolb, P. L. E. Bodelier, A. Lipski, P. F. Dunfield. 2006. The active methanotrophic community in hydromorphic soils changes in response to changing methane concentration. Environ. Microbiol. 8: 321-333.   DOI
11 Knief, C., A. Lipski, P. F. Dunfield. 2003. Diversity and activity of methanotrophic bacteria in different upland soils. Appl. Environ. Microbiol. 69: 6703-6714.   DOI
12 Kolb, S., C. Knief, S. Stubner, R. Conrad. 2003. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl. Environ. Microbiol. 69: 2423-2429.   DOI
13 Semrau, J. D., A. A. DiSpirito, S. Yoon. 2010. Methanotrophs and copper. FEMS Microbiol. Rev. 34: 1-36.   DOI
14 Macalady, J. L., A. M. S. McMillan, A. F. Dickens, S. C. Tyler, K. M. Scow. 2002. Population dynamics of type I and II methanotrophic bacteria in rice soils. Environ. Microbiol. 4: 148-157.   DOI
15 Moon, K.-E., S.-Y. Lee, S. H. Lee, H. W. Ryu, K.-S. Cho. 2010. Earthworm cast as a promising filter bed material and its methanotrophic contribution to methane removal. J. Hazard. Mater. 176: 131-138.   DOI
16 Pester, M., M. W. Friedrich, B. Schink, A. Brune. 2004. pmoA-based analysis of methanotrophs in a littoral lake sediment reveals a diverse and stable community in a dynamic environment. Appl. Environ. Microbiol. 70: 3138-3142.   DOI
17 Shannon, C. R., W. Weaver. 1963. The mathematical theory of communication, University of Illinois Press, Urbana, IL.
18 ter Braak, C. J. F., P. Smilauer. 2002. CANOCO reference manual and CanoDraw for Windows user's guide: Software for Canonical community ordination (version 4.5), Microcomputer Power, Ithaca, NY.
19 Whittenbury, R., K. C. Phillips, J. F. Wilkinson. 1970. Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61: 205-218.   DOI
20 Wittebolle, L., M. Marzorati, L. Clement, A. Balloi, D. Daffonchio, K. Heylen, P. De Vos, W. Verstraete, N. Boon. 2009. Initial community evenness favours functionality under selective stress. Nature 458: 623-626.   DOI