• 제목/요약/키워드: out-of-plane behavior

검색결과 238건 처리시간 0.029초

회전하는 얇은 링의 진동해석을 위한 비선형 모델링 (Non-linear Modelling for the Vibration Analysis of a Rotating Thin Ring)

  • 김원석;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.319-324
    • /
    • 2001
  • Free non-linear vibration of a rotating thin ring with a constant speed is analyzed when the ring has both the in-plane and out-of-plane motions. The geometric non-linearity of displacements is considered by adopting the Lagrange strain theory for the circumferential strain. By using Hamilton's principle, the coupled non-linear partial differential equations are derived, which describe the out-of-plane and in-plane bending, extensional and torsional motions. The natural frequencies are calculated from the linearized equations at various rotational speeds. Finally, the computation results from three non-linear models are compared with those from a linear model. Based on the comparison, this study recommends which model is appropriate to describe the non- linear behavior more precisely.

  • PDF

면외방향으로 반복하중을 받는 철근콘크리트 벽식 교각의 내진성능평가 (Seismic Performance Assessment of RC Pier Walls under Cyclic Out-of-plane Loading)

  • 김태훈;김영진;신현목
    • 한국지진공학회논문집
    • /
    • 제10권5호
    • /
    • pp.73-83
    • /
    • 2006
  • 이 연구의 목적은 면외방향으로 반복하중을 받는 철근콘크리트 벽식 교각의 지진거동을 파악하고 합리적이면서 경제적인 내진설계기준을 개발하는데 있다. 정확하고 올바른 성능평가를 위하여 신뢰성 있는 비선형 유한요소해석 프로그램을 사용하였다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위한 RCAHEST이다. 유한요소로서는 면내회전강성도를 갖는 4절점 평면 쉘요소가 사용되었다. 두께방향에 대한 철근과 콘크리트의 재료성질을 고려하기 위하여 층상화기법이 도입되었다. 재료적 비선형성에 대해서는 균열콘크리트에 대한 인장, 압축, 전단모델과 콘크리트 속에 있는 철근모델을 조합하여 고려하였다. 신뢰성 있는 실험결과와 비교를 통하여 이 논문의 제안방법이 면외방향으로 반복하중을 받는 철근콘트리트 벽식 교각의 내진성능평가에 적합한 방법임을 입증하고자 한다.

Out-of-plane seismic failure assessment of spandrel walls in long-span masonry stone arch bridges using cohesive interface

  • Bayraktar, Alemdar;Hokelekli, Emin;Halifeoglu, Meral;Halifeoglu, Zulfikar;Ashour, Ashraf
    • Earthquakes and Structures
    • /
    • 제18권1호
    • /
    • pp.83-96
    • /
    • 2020
  • The main structural elements of historical masonry arch bridges are arches, spandrel walls, piers and foundations. The most vulnerable structural elements of masonry arch bridges under transverse seismic loads, particularly in the case of out-of-plane actions, are spandrel wall. The vulnerability of spandrel walls under transverse loads increases with the increasing of their length and height. This paper computationally investigates the out-of-plane nonlinear seismic response of spandrel walls of long-span and high masonry stone arch bridges. The Malabadi Bridge with a main arch span of 40.86m and rise of 23.45m built in 1147 in Diyarbakır, Turkey, is selected as an example. The Concrete Damage Plasticity (CDP) material model adjusted to masonry structures, and cohesive interface interaction between the infill and the spandrel walls and the arch are considered in the 3D finite element model of the selected bridge. Firstly, mode shapes with and without cohesive interfaces are evaluated, and then out-of-plane seismic failure responses of the spandrel walls with and without the cohesive interfaces are determined and compared with respect to the displacements, strains and stresses.

An exact finite strip for the calculation of relative post-buckling stiffness of isotropic plates

  • Ovesy, H.R.;Ghannadpour, S.A.M.
    • Structural Engineering and Mechanics
    • /
    • 제31권2호
    • /
    • pp.181-210
    • /
    • 2009
  • This paper presents the theoretical developments of an exact finite strip for the buckling and initial post-buckling analyses of isotropic flat plates. The so-called exact finite strip is assumed to be simply supported out-of-plane at the loaded ends. The strip is developed based on the concept that it is effectively a plate. The present method, which is designated by the name Full-analytical Finite Strip Method in this paper, provides an efficient and extremely accurate buckling solution. In the development process, the Von-Karman's equilibrium equation is solved exactly to obtain the buckling loads and the corresponding form of out-of-plane buckling deflection modes. The investigation of thin flat plate buckling behavior is then extended to an initial post-buckling study with the assumption that the deflected form immediately after the buckling is the same as that obtained for the buckling. It is noted that in the present method, only one of the calculated out-of-plane buckling deflection modes, corresponding to the lowest buckling load, i.e., the first mode is used for the initial post-buckling study. Thus, the postbuckling study is effectively a single-term analysis, which is attempted by utilizing the so-called semi-energy method. In this method, the Von-Karman's compatibility equation governing the behavior of isotropic flat plates is used together with a consideration of the total strain energy of the plate. Through the solution of the compatibility equation, the in-plane displacement functions which are themselves related to the Airy stress function are developed in terms of the unknown coefficient in the assumed out-of-plane deflection function. These in-plane and out-of-plane deflected functions are then substituted in the total strain energy expressions and the theorem of minimum total potential energy is applied to solve for the unknown coefficient. The developed method is subsequently applied to analyze the initial postbuckling behavior of some representative thin flat plates for which the results are also obtained through the application of a semi-analytical finite strip method. Through the comparison of the results and the appropriate discussion, the knowledge of the level of capability of the developed method is significantly promoted.

바닥하중과 압축력을 받는 플랫 플레이트의 장기거동에 대한 해석적 연구 (Numerical Study on Long-term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads)

  • 최경규;박홍근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.611-616
    • /
    • 2000
  • Numerical studies were carried out to investigate the long-term behavior of late plates in basement, subjected to combined in-plane compressive and transverse loads. For the numerical studies, a computer program of nonlinear finite element analysis was modified by adding function of creep and shrinkage analysis. This numerical method was verified by comparison with the existing experiments. Parametric studies were performed to investigate the strength variations of flat plates with three parameters; 1) loading sequence of floor load, compression and time 2) uniaxial an biaxial compression and 3) the ratio of dead to live load.

  • PDF

ESPI 법에 의한 복합재 평판의 인장 및 진동 거동에 관한 연구 (A Study under behavior of tensile and vibration in composite plate by ESPI method)

  • 김경석
    • 한국생산제조학회지
    • /
    • 제8권4호
    • /
    • pp.106-111
    • /
    • 1999
  • This study discusses a non-contact optical technique electronic, electronic speckle pattern interferometry(ESPI) that is well suited for in-plane and out-of-plane deformation measurement Used as specimen which has the boundary condition of two clamped parallel edges composite material AS4/PEEK[30/-30/90]s was analyzed by ESPI to determined the characteristics of tensile and vibration. These are quantitativly compared with the result of FEM analysis. Finally the results of this study are briefly summarized as follows : (1) In the in-plane strain analysis by comparison of theoretical results with experimental results qualitatively we confirmed that measurement errors are within 3 % in case of accuracy (2) From comparison of experimental vibration modes with numerical vibration mode shapes by the FEM analysis quantitatively we confirmed that vibration mode measurement by the ESPI has high accuacy.

  • PDF

바닥하중과 압축력을 받는 플랫 플레이트의 장기거동에 대한 해석적 연구 (Numerical Study on Long-term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads)

  • 최경규;박홍근
    • 콘크리트학회논문집
    • /
    • 제12권5호
    • /
    • pp.153-164
    • /
    • 2000
  • Numerical studies were carried out to investigate long-term behavior of flat plates, subjected to combined in-plane compressive and transverse loads. For the numerical studies, a computer program of nonlinear finite element analysis was developed. It can address creep and shrinkage as weel as geometrical and material nonlinearity, and also it can address various load combinations and loading sequences of transverse load, in-plane compressive load and time. This numerical method was verified by comparison with the existing experiments. Parametric studies were performed to investigate the strength variations of flat plates with four parameters; 1) loading sequence of floor load, compressive load and time 2) uniaxial and biaxial compression 3) the ratio of dead to live load 4) span length. Through the numerical studies, the behavioral characteristics of the flat plates and the governing load combinations were examined. These results will be used to develop a design procedure for the long-term behavior of flat plates in the future.

Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique

  • Ghannadpour, S.A.M.;Moradi, F.
    • Advances in nano research
    • /
    • 제7권5호
    • /
    • pp.311-324
    • /
    • 2019
  • The present study aims to evaluate the nonlinear and post-buckling behaviors of orthotropic graphene sheets exposed to end-shortening strain by implementing a semi-Galerkin technique, as a new approach. The nano-sheets are regarded to be on elastic foundations and different out-of-plane boundary conditions are considered for graphene sheets. In addition, nonlocal elasticity theory is employed to achieve the post-buckling behavior related to the nano-sheets. In the present study, first, out-of-plane deflection function is considered as the only displacement field in the proposed technique, which is hypothesized by an appropriate deflected form. Then, the exact nonlocal stress function is calculated through a complete solution of the von-Karman compatibility equation. In the next step, Galerkin's method is used to solve the unknown parameters considered in the proposed technique. In addition, three different scenarios, which are significantly different with respect to concept, are used to satisfy the natural in-plane boundary conditions and completely attain the stress function. Finally, the post-buckling behavior of thin graphene sheets are evaluated for all three different scenarios, and the impacts of boundary conditions, polymer substrate, and nonlocal parameter are examined in each scenario.

Analysis and prediction of ultimate strength of high-strength SFRC plates under in-plane and transverse loads

  • Perumal, Ramadoss;Palanivel, S.
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1273-1287
    • /
    • 2014
  • Plates are most widely used in the hulls of floating concrete structures, bridge decks, walls of off-shore structures and liquid storage tanks. A method of analysis is presented for the determination of load-deflection response and ultimate strength of high-strength steel fiber reinforced concrete (HSSFRC) plates simply supported on all four edges and subjected to combined action of external compressive in-plane and transverse loads. The behavior of HSSFRC plate specimens subjected to combined uniaxial in-plane and transverse loads was investigated. The proposed analytical method is compared to the physical test results, and shows good agreement. To predict the constitutive behavior of HSSFRC in compression, a non-dimensional characteristic equation was proposed and found to give reasonable accuracy.

유한요소해석을 활용한 비구조 조적벽의 면외방향 설계 (Design for Out-of-Plane Direction of Nonstructural Masonry Walls Using Finite Element Analysis)

  • 최명규;유은종;김민재
    • 한국지진공학회논문집
    • /
    • 제26권1호
    • /
    • pp.23-30
    • /
    • 2022
  • This study proposed a simplified finite element analysis procedure for designing the nonstructural masonry wall in the out-of-plane direction. The proposed method is a two-step elastic analysis procedure by bilinearizing the behavior of the masonry wall. The first step analysis was conducted with initial stiffness representing the behavior up to the effective-yield point, and the second step analysis was conducted with post-yield stiffness. In addition, the orthotropic material property of the masonry was considered in the FE analysis. The maximum load was estimated as the sum of the maximum loads in the first and second step analyses. The maximum load was converted into the moment coefficients and compared with those from the yield line method applied in Eurocode 6. The moment coefficients calculated through the proposed procedure showed a good match with those from the yield line method with less than 6% differences.