Browse > Article
http://dx.doi.org/10.12989/anr.2019.7.5.311

Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique  

Ghannadpour, S.A.M. (New Technologies and Engineering Department, Shahid Beheshti University)
Moradi, F. (New Technologies and Engineering Department, Shahid Beheshti University)
Publication Information
Advances in nano research / v.7, no.5, 2019 , pp. 311-324 More about this Journal
Abstract
The present study aims to evaluate the nonlinear and post-buckling behaviors of orthotropic graphene sheets exposed to end-shortening strain by implementing a semi-Galerkin technique, as a new approach. The nano-sheets are regarded to be on elastic foundations and different out-of-plane boundary conditions are considered for graphene sheets. In addition, nonlocal elasticity theory is employed to achieve the post-buckling behavior related to the nano-sheets. In the present study, first, out-of-plane deflection function is considered as the only displacement field in the proposed technique, which is hypothesized by an appropriate deflected form. Then, the exact nonlocal stress function is calculated through a complete solution of the von-Karman compatibility equation. In the next step, Galerkin's method is used to solve the unknown parameters considered in the proposed technique. In addition, three different scenarios, which are significantly different with respect to concept, are used to satisfy the natural in-plane boundary conditions and completely attain the stress function. Finally, the post-buckling behavior of thin graphene sheets are evaluated for all three different scenarios, and the impacts of boundary conditions, polymer substrate, and nonlocal parameter are examined in each scenario.
Keywords
nonlocal elasticity; nonlinear behavior; semi-Galerkin technique; nano-graphene sheets; polymer foundation;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Ebrahimi, F. and Barati, M.R. (2016), "Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium", Adv. Nano Res., Int. J., 4(3), 229-249. https://doi.org/10.12989/anr.2016.4.3.229   DOI
2 Ebrahimi, F. and Barati, M.R. (2018), 'Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory", Adv. Nano Res., Int. J., 6(2), 93-112. https://doi.org/10.12989/anr.2018.6.2.093   DOI
3 Ehyaei, J., Ebrahimi, F. and Salari, E. (2016), "Nonlocal vibration analysis of FG nano beams with different boundary conditions", Adv. Nano Res., Int. J., 4(2), 85-111. https://doi.org/10.12989/anr.2016.4.2.085
4 Eringen, A.C. and Suhubi, E.S. (1964), "Nonlinear theory of simple micro-elastic solids-I", Int. J. Eng. Sci., 2, 189-203. https://doi.org/10.1016/0020-7225(64)90004-7   DOI
5 Eringen, A. and Wegner, J. (2003), Nonlocal Continuum Field Theories, Applied Mechanics Reviews, Springer, New York, NY, USA.
6 Falvo, M.R., Clary, G., Helser, A., Paulson, S., Taylor, R.M., Chi, V., Brooks, F.P., Washburn, S. and Superfine, R. (1998), "Nanomanipulation experiments exploring frictional and mechanical properties of carbon nanotubes", Microsc. Microanal, 4, 504-512. https://doi.org/10.1017/S1431927698980485   DOI
7 Farajpour, A., Solghar, A.A. and Shahidi, A. (2013), "Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression", Phys. E Low-Dimens. Syst. Nanostruct., 47, 197-206. https://doi.org/10.1016/j.physe.2012.10.028   DOI
8 Ghannadpour, S.A.M. (2018), "Ritz method application to bending, buckling and vibration analyses of Timoshenko beams via nonlocal elasticity", J. Appl. Comput. Mech., 4, 16-26. https://doi.org/10.22055/JACM.2017.21915.1120
9 Ghannadpour, S.A.M. and Mohammadi, B. (2010), "Buckling Analysis of Micro- and Nano-Rods/Tubes Based on Nonlocal Timoshenko Beam Theory Using Chebyshev Polynomials", Adv. Mater. Res., 123, 619-622. https://doi.org/10.4028/www.scientific.net/AMR.123-125.619   DOI
10 Ghannadpour, S.A.M. and Mohammadi, B. (2011), "Vibration of nonlocal Euler beams using Chebyshev polynomials", Key Eng. Mater., 471, 1016-1021. https://doi.org/10.4028/www.scientific.net/KEM.471-472.1016   DOI
11 Ghannadpour, S.A.M., Mohammadi, B. and Fazilati, J. (2013), "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method", Compos. Struct., 96, 584-589. https://doi.org/10.1016/j.compstruct.2012.08.024   DOI
12 Golmakani, M.E. and Sadraee Far, M.N. (2016), "Nonlinear thermo-elastic bending behavior of graphene sheets embedded in an elastic medium based on nonlocal elasticity theory", Comput. Math. Appl., 72, 785-805. https://doi.org/10.1016/j.camwa.2016.06.022   DOI
13 Jensen, K., Kim, K. and Zettl, A. (2008), "An atomic-resolution nanomechanical mass sensor", Nat. Nanotechnol., 3(9), 533. https://doi.org/10.1038/nnano.2008.200   DOI
14 Jomehzadeh, E. and Saidi, A.R. (2011a), "Decoupling the nonlocal elasticity equations for three dimensional vibration analysis of nano-plates", Compos. Struct., 93, 1015-1020. https://doi.org/10.1016/j.compstruct.2010.06.017   DOI
15 Jomehzadeh, E. and Saidi, A.R. (2011b), "A study on large amplitude vibration of multilayered graphene sheets", Comput. Mater. Sci., 50, 1043-1051. https://doi.org/10.1016/j.commatsci.2010.10.045   DOI
16 Jomehzadeh, E., Saidi, A.R. and Pugno, N.M. (2012), "Large amplitude vibration of a bilayer graphene embedded in a nonlinear polymer matrix", Phys. E Low-Dimensional Syst. Nanostruct., 44, 1973-1982. https://doi.org/10.1016/j.physe.2012.05.015   DOI
17 Li, C. and Chou, T.W. (2003a), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8   DOI
18 Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039
19 Anjomshoa, A., Shahidi, A.R., Hassani, B. and Jomehzadeh, E. (2014), "Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory", Appl. Math. Model, 38, 5934-5955. https://doi.org/10.1016/j.apm.2014.03.036   DOI
20 Lee, G. Do, Wang, C.Z., Yoon, E., Hwang, N.M. and Ho, K.M. (2006), "Vacancy defects and the formation of local haeckelite structures in graphene from tight-binding molecular dynamics", Phys. Rev. B - Condens. Matter Mater. Phys., 74(24), 245411. https://doi.org/10.1103/PhysRevB.74.245411   DOI
21 Li, C. and Chou, T.W. (2003b), "Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators", Phys. Rev. B - Condens. Matter Mater. Phys., 68(7), 073405. https://doi.org/10.1103/PhysRevB.68.073405   DOI
22 Li, C. and Chou, T.W. (2006), "Elastic wave velocities in single-walled carbon nanotubes", Phys. Rev. B - Condens. Matter Mater. Phys., 73(24), 245407. https://doi.org/10.1103/PhysRevB.73.245407   DOI
23 Li, Y.S. and Pan, E. (2015), "Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory", Int. J. Eng. Sci., 97, 40-59. https://doi.org/10.1016/j.ijengsci.2015.08.009   DOI
24 Novoselov, K.S. (2011), "Nobel Lecture: Graphene: Materials in the Flatland", Rev. Mod. Phys., 83, 837-849. https://doi.org/10.1103/RevModPhys.83.837   DOI
25 Liew, K.M., Wong, C.H., He, X.Q., Tan, M.J. and Meguid, S.A. (2004), "Nanomechanics of single and multiwalled carbon nanotubes", Phys. Rev. B - Condens. Matter Mater. Phys., 69(11), 115429. https://doi.org/10.1103/PhysRevB.69.115429   DOI
26 Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2015), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324   DOI
27 Naderi, A. and Saidi, A.R. (2014), "Nonlocal postbuckling analysis of graphene sheets in a nonlinear polymer medium", Int. J. Eng. Sci., 81, 49-65. https://doi.org/10.1016/j.ijengsci.2014.04.004   DOI
28 Pradhan, S.C. and Murmu, T. (2009), "Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics", Comput. Mater. Sci., 47, 268-274. https://doi.org/10.1016/j.commatsci.2009.08.001   DOI
29 Ovesy, H.R. and Ghannadpour, S.A.M. (2011), "An exact finite strip for the initial postbuckling analysis of channel section struts", Comput. Struct., 89, 1785-1796. https://doi.org/10.1016/j.compstruc.2010.10.009   DOI
30 Phiri, J., Johansson, L.S., Gane, P. and Maloney, T. (2018), "A comparative study of mechanical, thermal and electrical properties of graphene-, graphene oxide- and reduced graphene oxide-doped microfibrillated cellulose nanocomposites", Compos. Part B Eng., 147, 104-113. https://doi.org/10.1016/j.compositesb.2018.04.018   DOI
31 Radic, N. and Jeremic, D. (2016), "Thermal buckling of double-layered graphene sheets embedded in an elastic medium with various boundary conditions using a nonlocal new first-order shear deformation theory", Compos. Part B Eng., 97, 201-215. https://doi.org/10.1016/j.compositesb.2016.04.075   DOI
32 Ball, P. (2001), "Roll up for the revolution", Nature, 414, 142-144. https://doi.org/10.1038/35102721   DOI
33 Sears, A. and Batra, R.C. (2004), "Macroscopic properties of carbon nanotubes from molecular-mechanics simulations", Phys. Rev. B - Condens. Matter Mater. Phys., 69(23), 235406. https://doi.org/10.1103/PhysRevB.69.235406   DOI
34 Shen, L., Shen, H.-S. and Zhang, C.-L. (2010), "Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments", Comput. Mater. Sci., 48, 680-685. https://doi.org/10.1016/j.commatsci.2010.03.006   DOI
35 Soleimani, A., Naei, M.H. and Mosavi Mashadi, M. (2017), "Nonlocal postbuckling analysis of graphene sheets with initial imperfection based on first order shear deformation theory", Results Phys., 7, 1299-1307. https://doi.org/10.1016/j.rinp.2017.03.003   DOI
36 Ansari, R. and Gholami, R. (2016), "Size-dependent nonlinear vibrations of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory", Int. J. Appl. Mech., 8, 1650053. https://doi.org/10.1142/S1758825116500538   DOI
37 Arefi, M., Mohammad-Rezaei Bidgoli, E., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2019), "Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets", Compos. Part B Eng., 166, 1-12. https://doi.org/10.1016/j.compositesb.2018.11.092   DOI
38 Bensaid, I. (2017), "A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams", Adv. Nano Res., Int. J., 5(2), 113-126. https://doi.org/10.12989/anr.2017.5.2.113   DOI
39 Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Advances Nano Res., Int. J., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279
40 Brischetto, S., Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2015), "Refined 2D and exact 3D shell models for the free vibration analysis of single-and double-walled carbon nanotubes", Technologies, 3(4), 259-284. https://doi.org/10.3390/technologies3040259   DOI
41 Chakraverty, S. and Behera, L. (2014), "Free vibration of rectangular nanoplates using Rayleigh-Ritz method", Phys. E Low-Dimens. Syst. Nanostruct., 56, 357-363. https://doi.org/10.1016/j.physe.2013.08.014   DOI
42 Duan, W.H., Wang, Q., Wang, Q. and Liew, K.M. (2010), "Modeling the instability of carbon nanotubes: from continuum mechanics to molecular dynamics", J. Nanotechnol. Eng. Med., 1, 11001. https://doi.org/10.1115/1.3212820   DOI
43 Tavakolian, F., Farrokhabadi, A. and Mirzaei, M. (2017), "Pull-in instability of double clamped microbeams under dispersion forces in the presence of thermal and residual stress effects using nonlocal elasticity theory", Microsyst. Technol., 23, 839-848. https://doi.org/10.1007/s00542-015-2785-z   DOI
44 Stradi, D., Martinez, U., Blom, A., Brandbyge, M. and Stokbro, K. (2016), "General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium Green's function", Phys. Rev. B, 93, 155302. https://doi.org/10.1103/PhysRevB.93.155302   DOI
45 Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., Int. J., 54, 755-769. https://doi.org/10.12989/sem.2015.54.4.755   DOI
46 Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2016), "Beam buckling analysis by nonlocal integral elasticity finite element method", Int. J. Struct. Stab. Dyn., 16, 1550015. https://doi.org/10.1142/S0219455415500157   DOI
47 Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18(10), 105401. https://doi.org/10.1088/0957-4484/18/10/105401   DOI
48 Tounsi, A., Benguediab, S., Adda, B., Semmah, A. and Zidour, M. (2013). "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001   DOI
49 Wang, Q. and Varadan, V.K. (2006), "Wave characteristics of carbon nanotubes", Int. J. Solids Struct., 43, 254-265. https://doi.org/10.1016/j.ijsolstr.2005.02.047   DOI
50 Wang, C.M., Tan, V.B.C. and Zhang, Y.Y. (2006), "Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes", J. Sound Vib., 294, 1060-1072. https://doi.org/10.1016/j.jsv.2006.01.005   DOI
51 Zibaei, I., Rahnama, H., Taheri-Behrooz, F. and Shokrieh, M.M. (2014), "First strain gradient elasticity solution for nanotube-reinforced matrix problem", Compos. Struct., 112, 273-282. https://doi.org/10.1016/j.compstruct.2014.02.023   DOI
52 Xu, Y.M., Shen, H.S. and Zhang, C.L. (2013), "Nonlocal plate model for nonlinear bending of bilayer graphene sheets subjected to transverse loads in thermal environments", Compos. Struct., 98, 294-302. https://doi.org/10.1016/j.compstruct.2012.10.041   DOI
53 Young, R.J., Kinloch, I.A., Gong, L. and Novoselov, K.S. (2012), "The mechanics of graphene nanocomposites: A review", Compos. Sci. Technol., 72, 1459-1476. https://doi.org/10.1016/j.compscitech.2012.05.005   DOI
54 Zhang, L.W., Zhang, Y. and Liew, K.M. (2017), "Modeling of nonlinear vibration of graphene sheets using a meshfree method based on nonlocal elasticity theory", Appl. Math. Model., 49, 691-704. https://doi.org/10.1016/j.apm.2017.02.053   DOI