• Title/Summary/Keyword: osteoconduction

Search Result 31, Processing Time 0.023 seconds

Clinical application of bone graft materials in dental implant (임상가를 위한 특집 3 - 기능별 뼈이식재의 임프란트 적용방법)

  • Ahn, Kang-Min
    • The Journal of the Korean dental association
    • /
    • v.48 no.4
    • /
    • pp.275-279
    • /
    • 2010
  • Dental implant restoration in partial or full edentulous state has become the standard treatment in recent years. Bone graft with guided bone regeneration technique has been regarded as one of the most reliable methods to restore the bone defect area due to periodontal disease or dental trauma. Bone graft materials and membrane are the essential component of guided bone regeneration; however, a variety of bone graft materials confuse us in implant dentistry. Autogenous bone is the recognized standards in implant dentistry owing to its osteogenesis potential. Despite of its disadvantages, grafting autogenous bone is the most reliable methods. Even though the development of new bone grafts materials, autogenous bone is useful in exposed implant thread and total lack of buccal or lingual bone. Allogenic, xenogenic and synthetic bone have the osteoconductive and osteoinductive potential. These materials could be used successfully in self-contained cavity such as sinus cavity and three-wall defects. In this article, application of bone graft material is suggested according to the function of bone graft materials.

IMPLANTATION OF TOOTHASH COMBINED WITH PLASTER OF PARIS;EXPERIMENTAL STUDY (치아회분말 및 치과용 연석고 혼합매식술에 관한 실험적 연구)

  • Kim, Young-Kyun;Yeo, Hwan-Ho;Yang, In-Seog;Seo, Jae-Hoon;Cho, Jae-O
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.16 no.2
    • /
    • pp.122-129
    • /
    • 1994
  • This study was undertaken to determine whether the addition of calcium sulfate to toothash material (Toothash : plaster of paris=2 : 1) would improve its stabilizing property without adversely affecting its osteoconduction. The radiographic and histologic examinations of bone response of this composite material was performed after 1-, 3-, 5-, 8-, and 12-week implantation in calvaria of rats. No sign of extensive inflammatory response was detected. No movement could be observed with this composite material. Creeping substitution was observed in the surgical site. The direct union between toothash and growing bone after 12 weeks of implantation was observed in the defect margin. We could observe this composite implant material is resorbing slowly as time is over.

  • PDF

Percutaneous osteoplasty for painful bony lesions: a technical survey

  • Kim, Won-Sung;Kim, Kyung-Hoon
    • The Korean Journal of Pain
    • /
    • v.34 no.4
    • /
    • pp.375-393
    • /
    • 2021
  • Percutaneous osteoplasty (POP) is defined as the injection of bone cement into various painful bony lesions, refractory to conventional therapy, as an extended technique of percutaneous vertebroplasty (PVP). POP can be applied to benign osteochondral lesions and malignant metastatic lesions throughout the whole skeleton, whereas PVP is restricted to the vertebral body. Common spinal metastases occur in the thoracic (70%), lumbosacral (20%), and cervical (10%) vertebrae, in order of frequency. Extraspinal metastases into the ribs, scapulae, sternum, and humeral head commonly originate from lung and breast cancers; extraspinal metastases into the pelvis and femoral head come from prostate, urinary bladder, colon, and uterine cervical cancers. Pain is aggravated in the dependent (or weight bearing) position, or during movement (or respiration). The tenderness and imaging diagnosis should match. The supposed mechanism of pain relief in POP is the augmentation of damaged bones, thermal and chemical ablation of the nociceptive nerves, and local inhibition of tumor invasion. Adjacent (facet) joint injections may be needed prior to POP (PVP). The length and thickness of the applied needle should be chosen according to the targeted bone. Bone cement is also selected by its osteoconduction, osteoinduction, and osteogenesis. Needle route should be chosen as a shortcut to reach the target bony lesions, without damage to the nerves and vessels. POP is a promising minimally invasive procedure for immediate pain relief. This review provides a technical survey for POPs in painful bony lesions.

Guided Bone Regeneration Using a Putty-type Demineralized Bone Matrix: Case Report (Putty형 탈회동종골을 이용한 골유도 재생술: 증례보고)

  • Jang, Han-Seung;Kim, Su-Gwan;Moon, Seong-Yong;Oh, Ji-Su;Park, Jin-Ju;Jeong, Mi-Ae;Yang, Seok-Jin;Jung, Jong-Won;Kim, Jeong-Sun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.5
    • /
    • pp.420-424
    • /
    • 2011
  • Allomatrix (Wright Medical Tech, Inc., Arlington, Tenn, USA), is a newly designed, injectable putty with a reliable demineralized bone matrix (DBM), derived from human bone. The compound contains 86% DBM and other bone growth factors such as bone morphogenic protein (BMP)-2, BMP-4, insulin-like growth factor (IGF)-1, and transforming growth factor (TGF)-${\beta}1$. It has excellent osteoinduction abilities. In addition, DBM is known to have osteoconduction capacity as a scaffold due to its collagen matrix. This product contains a powder, which is a mix of DBM and surgical grade calcium sulfate as a carrier. A practitioner can blend the powder with calcium sulfate solution, making a putty-type material which has the advantages of ease of handling, better fixation, and no need for a membrane, because it can function as membrane itself. This study reports the clinical and radiographic results of various guided bone regeneration cases using Allomatrix, demonstrating its strong potential as a graft material.

The effects of bone regeneration in rabbit calvarial defect with particulated and block type of hydroxyapatite (토끼 두개골 결손부에서 블록형과 분말형 hydroxyapatite의 골전도 효과)

  • Gu, Sun-Ja;Sohn, Joo-Yeon;Lim, Hyun-Chang;Um, Yoo-Jung;Jung, Ui-Won;Kim, Chang-Sung;Lee, Yong-Keun;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.3
    • /
    • pp.321-329
    • /
    • 2009
  • Purpose: The purpose of this study was to evaluate the bone regeneration of particulated hydroxyapatite(HA) and block type of hydroxyapatite graft in rabbit calvarial defects. Methods: An 8 mm calvarial circular defects were created in sixteen young adult New Zealand white male rabbits (weight $3.0{\sim}3.5kg$). Each defects were filled with Bio-Oss, particulated HA and block type HA. Sham surgery control defects were filled with blood clots. The specimens were harvested at 4 weeks and 8 weeks for histologic and histomorphometric evaluation. Results: Histomorphometric analysis demonstrated statistical differences in defect closure, new bone formation, and bone density of the four groups. Block type of HA group showed increased bone formation and bone density at 4 weeks and 8 weeks compared with Bio-Oss group or sham surgery control group(p<0.05). Conclusions: Block type of HA is an effective material for osteoconduction in rabbit calvarial defects, which may acts as a guide in use of these products in human application.

Characteristic Analysis and Fabrication of Bioceramic Scaffold using Mixing Ratios of TCP/HA by Fused Deposition Modeling (압출 적층 조형 기술을 이용한 TCP/HA 의 혼합비율에 따른 바이오 세라믹 인공지지체의 제작 및 특성 연구)

  • Sa, Min-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1273-1281
    • /
    • 2014
  • Tissue engineering is an emerging research field that has the potential to restore, regenerate and repair damaged bone tissue and organs. Tricalcium phosphate and hydroxyapatite biomaterials-based calcium phosphate are excellent materials that have both osteoconduction and biocompatibility for bone tissue regeneration. In this study, solution structures were successfully fabricated using a fused deposition modeling system based on deposition and heating devices. The morphology characteristics of the bioceramic scaffolds sintered at a temperature of $1,300^{\circ}C$ were analyzed by scanning electron microscopy. The effects of various blended TCP/HA ratio on the microstructure and shrinkage were studied. The mechanical properties of the scaffolds were measured using a compression testing machine from stress-strain curves on the crosshead velocity of 1 mm/min. The fabricated scaffolds were evaluated by cell proliferation tests of MG-63 cells. The results of this study suggest that the blended TCP(75 wt%)/HA(25 wt%) scaffold is an appropriate scaffold for bone tissue regeneration.

Evaluation of the Biocompatibility of Cuttlebone in Mouse (쥐에서 오적골 생체적합성 평가)

  • Won, Sangcheol;Lee, Joo Myoung;Cheong, Jongtae;Park, Hyunjung;Seo, Jongpil
    • Journal of Veterinary Clinics
    • /
    • v.32 no.5
    • /
    • pp.417-421
    • /
    • 2015
  • Bone grafting is widely used to bridge major bone defects or to promote bone union. Natural calcium carbonate (CC) has been used as a bone substitute material and used to scaffold for bone morphogenetic protein (BMP). The aims of this study is to evaluate the biocompatibility of cuttlebone (CB) and hydroxyapatite from CB (CBHA). Each material was shaped into disks (5 mm in diameter and 2 mm in thickness). To test biocompatibility, the disks were implanted into the dorsal subcutaneous tissue in mice. Fibrous capsule thickness around each disk was evaluated histologically at 2 and 4 weeks after implantation. Concerning biocompatibility, fibrous capsule thickness of CBHA was significantly thinner than that of CB and CHA (p < 0.05) at 2 and 4 weeks after implantation. Based on the clinical and histological results, CBHA would be a safe material for use inside the body and has more effective osteoconduction than CB.

Study of bone healing pattern in extraction socket after application of demineralized dentin matrix material (자가치아 뼈 이식재의 발치와내 이식 후 골 치유 양상에 관한 연구)

  • Chung, Jae-Ho;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.5
    • /
    • pp.365-374
    • /
    • 2011
  • Introduction: Research on dental bone graft material has been actively conducted. Recently, demineralized dentin matrix material has been developed and introduced. This study examined the effect of demineralized dentin matrix material on bone healing. Subjects and Methods: The patients who received no treatment after extraction were used as the control group and patients who underwent demineralized dentin matrix material application in the extraction socket after extraction were used as the experimental group. Panorama radiography was performed at the baseline and at 3.5 months after graft material placement and CT was taken at 3.5 months after graft material placement for a radiologic evaluation. Bony tissue specimens were collected from the alveolar crest in the middle of the extraction socket using a 2 mm trephine bur after 3.5 months for the histology and hostomorphometric study. Results: 1. On the panoramic view, a higher bone density was observed in the subject group. 2. On the panoramic view, the bone density increased significantly in the extraction socket, from the baseline to 3.5 months: a 7 and 10 gray-level scale was observed in the control and experimental group, respectively (P<0.05). 3. The CT view evaluation at 3.5 months revealed significantly higher bone density in the subject group than the control group (P<0.05). 4. The histological findings showed more active new bone and lamellar bone formation in the subject group. Dentin with osteoinduction ability and enamel with osteoconduction ability appeared. 5. On histomorphometric analysis, the subject group showed significantly more new bone, lamellar bone area and lower soft tissue area (P<0.05). The difference between the groups was significant (P<0.05). Conclusion: Bone healing was improved after the application of demineralized dentin matrix material and there was active new bone and lamellar bone formation.

The Comparison of the Effects on the Regeneration with Xenografts on the Furcation Involvement in Beagle Dogs (성견 치근 이개부 병소에서 이종골 이식재의 치주조직 재생에 미치는 영향에 대한 비교 연구)

  • Cho, Jin-Sang;Kim, Jong-Yeo;Chung, Chin-Hyung;Yim, Sung-Bin
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.2
    • /
    • pp.277-287
    • /
    • 2000
  • For the regeneration of osseous defect on the furcation area, autogeneous bone graft has been primarily used. But it has the limitation of donor site, additive surgical operation etc. Recently anorganic xenogenic bone graft materials of removing all organic components are commonly used for the regeneration of periodontal defects. This study was the comparison of the effect on the regeneration with two types xenografts($Bio-oss^{(R)}$ and Ca-P thin coated Bovine bone powder) on the furcation involvement in Beagle dogs. After surgically induced chronic periodontitis in bifurcation area of premolar, $Bio-oss^{(R)}$ and Ca-P BBP were grafted on the osseous defects. Tissue blocks including defects with soft tissues were harvested following a four-& eight-week healing interval and prepared for histologic analysis. The results of this study were as follows: 1. $Bio-oss^{(R)}$ group: there were significant differences among the $Bio-oss^{?}$ group at 4weeks and 8weeks, but the control group had various appearances : new bone formation, resorption of graft materials by multinuclear giant cells, connective tissue cells intervention in the bone graft sites etc. 2. Ca-P BBP group: lots of new bone formation were observed but the arrangement of periodontal ligament was not completed at 4weeks. New bone were replaced mature bone and the periodontal ligaments showed the functional arrangement at 8weeks. 3. By reason of undergrowing the epithelium within the osseous defects, new bone formation was not happened in the upper area of bifurcation in $Bio-oss^{(R)}$ group. 4. In Ca-P BBP group, epithelial undergrowth was not seen and generally showed much more new bone formation. 5. Ca-P BBP group showed the osteocyte-like cells at the inner portion of the graft materials 6. Both groups were similar to resorptive appearances of graft materials, but Ca-P BBP group had the better effects of osteoconduction.

  • PDF

Histologic Study on Healing after Implantation of several Bone Substitutes in Rat Calvarial Defects (백서 두개골 결손부에 수종의 합성골 이식후 치유양상)

  • Lee, Eun-Ju;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.1
    • /
    • pp.87-102
    • /
    • 1998
  • The purpose of this stuffy was to assess and compare the osseous responses to implanted particles of porous synthetic HA (Interpore $200^{(R)}$, Interpore International, U.S.A.), resorbable natural bovine derived HA (Bio-$oss^{(R)}$, Gestlich Pharma, Switzerland) and calcium carbonate(Biocoral $450^{(R)}$, Inoteb, France) in bone defects. Four calvarial defects of 2.5mm diameter were created in earth of 16 Sprague-Dawley rats. The experimental materials were subsequently implanted hi three defects, leaving the fourth defect for control purpose. Four animals were earth sacrificed at 3 days, 1week, 2weeks and 4 weeks after surgery. The tissue response was evaluated under light microscope. Overall, histologic responses showed that all the particles were well tolerated and caused no aberrent tissue responses. There were difference in the amount of newly formed bone at the experimental sites and control site. There was more new bone formation associated with calcium carbonate site. In addition, the calcium carbonate site displayed multinucleated giant cells surrounding calcium carbonate particles after the 1st week, and osteoid tissue within the particle after the 2nd week. After 4 weeks, calcium carbonate particles were resorbed and replaced with new bone. The healing of the natural bovine derived HA site was similar to that of porous synthetic HA, except that new bone growth between the two particles have progressed more in the former site after the 2nd week. In the natural bovine derived HA site, the particle was surrounded by newly formed bone after the 4th week. After 4 weeks, the control site showed more mature bone than other sites. In conclusion, the grafted site were better in new bone formation than non-grafted sites. In particular the calcium Carbonate site showed the ability of osteoinduction and natural bovine denver HA showed osteoconduction in rat calvarial defects. This suggest that calcium carbonate and natural bovine derived HA could enhance the regenerative potential in periodontal defects.

  • PDF