The effects of bone regeneration in rabbit calvarial defect with particulated and block type of hydroxyapatite

토끼 두개골 결손부에서 블록형과 분말형 hydroxyapatite의 골전도 효과

  • Gu, Sun-Ja (Department of Periodontology, Research institute of periodontal regeneration, College of Dentistry, Yonsei University) ;
  • Sohn, Joo-Yeon (Department of Periodontology, Research institute of periodontal regeneration, College of Dentistry, Yonsei University) ;
  • Lim, Hyun-Chang (Department of Periodontology, Research institute of periodontal regeneration, College of Dentistry, Yonsei University) ;
  • Um, Yoo-Jung (Department of Periodontology, Research institute of periodontal regeneration, College of Dentistry, Yonsei University) ;
  • Jung, Ui-Won (Department of Periodontology, Research institute of periodontal regeneration, College of Dentistry, Yonsei University) ;
  • Kim, Chang-Sung (Department of Periodontology, Research institute of periodontal regeneration, College of Dentistry, Yonsei University) ;
  • Lee, Yong-Keun (Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University) ;
  • Choi, Seong-Ho (Department of Periodontology, Research institute of periodontal regeneration, College of Dentistry, Yonsei University)
  • 구순자 (연세대학교 치과대학 치주과학교실, 치주조직재생연구소) ;
  • 손주연 (연세대학교 치과대학 치주과학교실, 치주조직재생연구소) ;
  • 임현창 (연세대학교 치과대학 치주과학교실, 치주조직재생연구소) ;
  • 엄유정 (연세대학교 치과대학 치주과학교실, 치주조직재생연구소) ;
  • 정의원 (연세대학교 치과대학 치주과학교실, 치주조직재생연구소) ;
  • 김창성 (연세대학교 치과대학 치주과학교실, 치주조직재생연구소) ;
  • 이용근 (연세대학교 치과대학 치과생체재료공학교실) ;
  • 최성호 (연세대학교 치과대학 치주과학교실, 치주조직재생연구소)
  • Published : 2009.09.30

Abstract

Purpose: The purpose of this study was to evaluate the bone regeneration of particulated hydroxyapatite(HA) and block type of hydroxyapatite graft in rabbit calvarial defects. Methods: An 8 mm calvarial circular defects were created in sixteen young adult New Zealand white male rabbits (weight $3.0{\sim}3.5kg$). Each defects were filled with Bio-Oss, particulated HA and block type HA. Sham surgery control defects were filled with blood clots. The specimens were harvested at 4 weeks and 8 weeks for histologic and histomorphometric evaluation. Results: Histomorphometric analysis demonstrated statistical differences in defect closure, new bone formation, and bone density of the four groups. Block type of HA group showed increased bone formation and bone density at 4 weeks and 8 weeks compared with Bio-Oss group or sham surgery control group(p<0.05). Conclusions: Block type of HA is an effective material for osteoconduction in rabbit calvarial defects, which may acts as a guide in use of these products in human application.

Keywords

References

  1. Hiatt WH, Schallhorn RG. Intraoral transplants of cancellous bone and marrow in periodontal lesions. J Periodontol 1973;44:194-208 https://doi.org/10.1902/jop.1973.44.4.194
  2. Mellonig JT. Periodontal bone graft technique. Int J Periodontics Restorative Dent 1990;10:288-299
  3. Hoexter DL. Bone regeneration graft materials. J Oral Implantol 2002;28:290-294 https://doi.org/10.1563/1548-1336(2002)028<0290:BRGM>2.3.CO;2
  4. Pinholt EM, Solheim E, Bang G, Sudmann E. Bone induction by composites of bioresorbable carriers and demineralized bone in rats: a comparative study of fibrin-collagen paste, fibrin sealant, and polyorthoester with gentamicin. J Oral Maxillofac Surg 1992;50:1300-1304 https://doi.org/10.1016/0278-2391(92)90231-N
  5. Schwartz Z, Somer A, Mellonig JT, Carnes DL Jr, Dean DD, Cochran DL, Boyan BD. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation is dependent on age but not gender. J Periodontol 1998;69:470-478 https://doi.org/10.1902/jop.1998.69.4.470
  6. Somerman MJ. Is there a role for DFDBA in periodontal regenerative therapy? J Periodontol 1996;67:946-948 https://doi.org/10.1902/jop.1996.67.9.946
  7. Yildirim M, Spiekermann H, Biesterfeld S, Edelhoff D. Maxillary sinus augmentation using xenogenic bone substitute material Bio-Oss in combination with venous blood. A histologic and histomorphometric study in humans. Clin Oral Implants Res 2000;11:217-229 https://doi.org/10.1034/j.1600-0501.2000.011003217.x
  8. Pinholt EM, Bang G, Haanaes HR. Alveolar ridge augmentation in rats by Bio-Oss. Scand J Dent Res 1991;99:154-161
  9. Haas R, Mailath G, Dortbudak O, Watzek G. Bovine hydroxyapatite for maxillary sinus augmentation: Analysis of interfacial bond strength of dental implants using pull-out tests. Clin Oral Implants Res 1998;9:117-122 https://doi.org/10.1034/j.1600-0501.1998.090207.x
  10. Artzi Z, Nemcovsky CE, Dayan D. Bovine-HA spongiosa blocks and immediate implant placement in sinus augmentation procedures. Histopathological and histomorphometric observations on different histological stainings in 10 consecutive patients. Clin Oral Implants Res 2002;13:420-427 https://doi.org/10.1034/j.1600-0501.2002.130411.x
  11. Carmagnola D, Berglundh T, Lindhe J. The effect of a fibrin glue on the integration of Bio-Oss with bone tissue. A experimental study in Labrador dogs. J Clin Periodontol 2002;29:377-383 https://doi.org/10.1034/j.1600-051X.2002.290501.x
  12. Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL, Gunsolley JC. The efficacy of bone replacement grafts in the treatment of periodontal osseous defects. A systematic review. Ann Periodontol 2003;8:227-265 https://doi.org/10.1902/annals.2003.8.1.227
  13. Carranza FA Jr, Kennedy EB, Lekovic V, Taltmante E, Valencia J, Dimitrijevic B. Histologic study of the healing of human periodontal defect after placement of porous hydroxyapatite implants. J Periodontol 1987;58:682-688 https://doi.org/10.1902/jop.1987.58.10.682
  14. Stahl SS. Froum SJ. Histologic evaluation of human intraosseous healing response to the placement of tricalcium phosphate ceramic implant. J Periodontol 1986;57:211-217 https://doi.org/10.1902/jop.1986.57.4.211
  15. de Bruijn JD, van Blitterswijk CA, Davies JE. Initial bone matrix formation at the hydroxyapatite interface in vivo. J Biomed Mater Res 1995;29:89-99
  16. Cerroni L, Filocamo R, Fabbri M, Piconi C, Caropresso S, Condo SG. Growth of osteoblast like cells on porous htdroxyapatite ceramics: an in vitro study. Biomol Eng 2002;19:119-124 https://doi.org/10.1016/S1389-0344(02)00027-8
  17. Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 1999;20:2287-2303 https://doi.org/10.1016/S0142-9612(99)00181-7
  18. Moskow BS, Bubarr A. Histological assessment of human periodontal defects after durapatite ceramic implants. J Periodontol 1983;54:455-462
  19. Yukna RA, Harrison BG, Caudill RF. Evaluation of durapatite ceramic as an alloplastic implant in periodontal osseous defects. Twelve month reentry results. J Periodontol 1985;56:540-547 https://doi.org/10.1902/jop.1985.56.9.540
  20. Jung-Yoo Choi, Gyung-Joon Chae, Chang-Sung Kim et al, The effects of novel biodegradable amorphorous calcium phosphate on bone regeneration in rat calvarial defects, J Korean Acad Periodontol 2007;37:871-879 https://doi.org/10.5051/jkape.2007.37.4.871
  21. Monroe EA, Votava W, Bass DB. New calcium phosphate ceramic material for bone and tooth implants. J Dent Res 1971;50:860-861 https://doi.org/10.1177/00220345710500041201
  22. Yoo-Jung Um, Ji-Yeon Hong, Sung-Tae Kim et al. Bone formation of newly developed biphasic calcium phosphate in rabbit calvarial defect model: pilot study. J Korean Acad Periodontol 2008;38:163-170
  23. Kwang-Ho Lee, Hyun-Seon Jang, Joo-Cheol Park et al, Bone formation effects of HA/β-TCP composite powder in rabbit calvarial bone defects: Histologic study. J Korean Acad Periodontol 2006;36:1-14 https://doi.org/10.5051/jkape.2006.36.1.1
  24. Fabbi M, Celotti GC, Ravaglioli A. Hydroxyapatite-based porous aggregates -physicochemical nature, structure, texture and architecture. Biomaterials 1995;16:225-228 https://doi.org/10.1016/0142-9612(95)92121-L
  25. Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials 1998;19:133-139 https://doi.org/10.1016/S0142-9612(97)00180-4
  26. Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. Pore size of porous hydroxyapatite as the cell substatum controls BMP-induced osteogenesis. J Biochem 1997;121:317-324 https://doi.org/10.1093/oxfordjournals.jbchem.a021589
  27. Scarano A, Pecora G, Piattelli M. Osseointegration in a sinus augmented with bovine porous bone mineral: histological results in an implant retrieved 4 years after insertion. A case report. J Periodontol 2004;75:1161-1166 https://doi.org/10.1902/jop.2004.75.8.1161
  28. Zaffe D, Leghissa GC, Pradelli J, Botticelli AR. Histological study on sinus lift grafting by Fisiograft and Bio-Oss. J Mater Sci Mater Med 2005;16:789-793 https://doi.org/10.1007/s10856-005-3574-5
  29. Yildrim M, Spiekermann H, Handt A, Edelhoff D. Maxillary sinus augmentation with the xenograft Bio-Oss and autogenous intraoral bone for qualitative improvement of the implant site: a histological and histomorphometric clinical study in humans. Int J Oral Maxillofac Implants 2001;16:23-33
  30. Lundgren D, Nyman S, Mathisen T, et al. Guided bone regeneration of cranial defects, using biodegradable barriers: an experimental pilot study in the rabbit. J Craniomaxillofacial Surg 1992;20:257-260 https://doi.org/10.1016/S1010-5182(05)80438-X
  31. Cavalcanti SC, Pereira CL, Mazzonetto R, de Moraes M, Moreira RW. Histological and histomorphometric analyses of calcium phosphate cement in rabbit calvaria. J Craniomaxillofac Surg. 2008;36:354-359 https://doi.org/10.1016/j.jcms.2008.02.005