References
- Aalto M, Heppleston AG. Fibrogenesis by mineral fibres: an in-vitro study of the roles of the macrophage and fibre length. Br J Exp Pathol 1984; 65: 91-99.
- Bakker D, van Blitterswijk CA, Hesseling SC, Grote JJ. Effect of implantation site on phagocyte/polymer interaction and fibrous capsule formation. Biomaterials 1988; 9: 14-23. https://doi.org/10.1016/0142-9612(88)90064-6
- Behling CA, Spector M. Quantitative characterization of cells at the interface of long-term implants of selected polymers. J Biomed Mater Res 1986; 20: 653-666. https://doi.org/10.1002/jbm.820200509
- Bosch C, Melsen B, Karin V. Guided bone regeneration in calvarial bone defects using polytetrafluoroethylene membranes. Cleft Palate-Craniofacial Journal 1995; 32: 311-317. https://doi.org/10.1597/1545-1569(1995)032<0311:GBRICB>2.3.CO;2
- Butler K, Benghuzzi H, Puckett A. Cytological evaluation of the tissue-implant reaction associated with S/C and I/P implantation of ALCAP and HA bioceramics in vivo. Pathol Res Pract 2001; 197: 29-39. https://doi.org/10.1078/0344-0338-00005
- Choi IH, Lee CI. Effectiveness of transplantation by freezedried bone of goat to dogs. Korean J Vet Clin Med 1998; 15: 442-449.
- Choung PH. An experimental study of undemineralized freeze-dried human bone. J Korean Assoc Maxillofac Plast Reconstr Surg 1996; 18: 164-174.
- Clark AE, Hench LL, Paschall HA. The influence of surface chemistry on implant interface histology: A theoretical basis for implant materials selection. J Biomed Mater Res 1976; 10: 161-174. https://doi.org/10.1002/jbm.820100202
- Dupoirieux L, Pourquier D, Neves M, Teot L. Resorption kinetics of eggshell: An in vivo study. J Craniofac Surg 2001a; 12: 53-58. https://doi.org/10.1097/00001665-200101000-00009
- Dupoirieux L, Pourquier D, Picot MC, Neves M. Comparative study of three different membranes for guided bone regeneration of rat cranial defects. Int J Oral Maxillofac Surg 2001b; 30: 58-62. https://doi.org/10.1054/ijom.2000.0011
- Durmu E, Celik I, Aydin MF, Yildirim G, Sur E. Evaluation of the biocompatibility and osteoproductive activity of ostrich eggshell powder in experimentally induced calvarial defects in rabbits. J Biomed Mater Res Part B: Appl Biomater 2007; 86B: 82-89.
- Kim CB, Lee MH, Kim BI, Min BW, Kim MH, Choe ES, Cho HW. Comparative biocompatibility of metal implants in connective tissue of abdominal wall of the mouse. J Toxicol Pub Health 2004; 20: 13-20.
- Kim, JJ, Kim HJ, Lee KS. Evaluation of biocompatibility of porous hydroxyapatite developed from edible cuttlefish bone. Key Engineering Materials 2008b; 361: 155-158.
- Lee JI, Song HN, Kim NS, Choi IH. Conparison of osteoinductive effect of freezing, freeze-drying and defat-freezing implant preparation for allograft in rabbit. Korean J Vet Res 2007a; 47: 219-228.
- Li DJ, Ohsaki K, Li K, Cui PC, Ye Q, Baba K, Wang QC, Tenshin A, Takano-Yamamoto T. Thickness of fibrous capsule after implantation of hydroxyapatite in subcutaneous tissue in rats. J Biomed Mater Res 1999; 45: 322-326. https://doi.org/10.1002/(SICI)1097-4636(19990615)45:4<322::AID-JBM6>3.0.CO;2-2
- Matlaga BF, Yasenchak LP, Salthouse TN. Tissue response to implanted polymers: The significance of sample shape. J Biomed Mater Res 1976; 10: 391-397. https://doi.org/10.1002/jbm.820100308
- Ryhanen J, Kallioinen M, Tuukkanen J, Junila J, Niemela E, Sandvik P, Serlo W. In vivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: Muscle and perineural tissue responses and encapsule membrane thickness. J Biomed Mater Res 1998; 41: 481-488. https://doi.org/10.1002/(SICI)1097-4636(19980905)41:3<481::AID-JBM19>3.0.CO;2-L
- Salthouse TN. Some aspects of macrophage behavior at the implant interface. J Biomed Mater Res 1984; 18: 395-401. https://doi.org/10.1002/jbm.820180407
- Sivakumar M, Kumart TSS, Shantha KL, Rao KP. Development of hydroxyapatite derived from Indian coral. Biomaterials 1996; 17: 1709-1714. https://doi.org/10.1016/0142-9612(96)87651-4
- White RA, Hirose FM, Sproat RW, Lawrence RS, Nelson RJ. Histopathologic observations after short-term implantation of two porous elastomers in dogs. Biomaterials 1981; 2: 171-176. https://doi.org/10.1016/0142-9612(81)90046-6
Cited by
- Cuttlebone as a Marine-Derived Material for Preparing Bone Grafts vol.20, pp.3, 2015, https://doi.org/10.1007/s10126-018-9816-6