DOI QR코드

DOI QR Code

Evaluation of the Biocompatibility of Cuttlebone in Mouse

쥐에서 오적골 생체적합성 평가

  • Won, Sangcheol (College of Veterinary Medicine, Jeju National University) ;
  • Lee, Joo Myoung (College of Veterinary Medicine, Jeju National University) ;
  • Cheong, Jongtae (College of Veterinary Medicine, Jeju National University) ;
  • Park, Hyunjung (College of Veterinary Medicine, Jeju National University) ;
  • Seo, Jongpil (College of Veterinary Medicine, Jeju National University)
  • Accepted : 2015.10.23
  • Published : 2015.10.30

Abstract

Bone grafting is widely used to bridge major bone defects or to promote bone union. Natural calcium carbonate (CC) has been used as a bone substitute material and used to scaffold for bone morphogenetic protein (BMP). The aims of this study is to evaluate the biocompatibility of cuttlebone (CB) and hydroxyapatite from CB (CBHA). Each material was shaped into disks (5 mm in diameter and 2 mm in thickness). To test biocompatibility, the disks were implanted into the dorsal subcutaneous tissue in mice. Fibrous capsule thickness around each disk was evaluated histologically at 2 and 4 weeks after implantation. Concerning biocompatibility, fibrous capsule thickness of CBHA was significantly thinner than that of CB and CHA (p < 0.05) at 2 and 4 weeks after implantation. Based on the clinical and histological results, CBHA would be a safe material for use inside the body and has more effective osteoconduction than CB.

골대체재는 지연유합이나 유합부전 그리고 골절술과 관절고정술 시 골편의 연속성 확립이 필요한 경우 골절의 주요 결손부위를 채우는데 주로 활용되고 있다. 자가골을 대체할 수 있는 천연 골이식재의 대표적인 것이 calcium carbonate (CC)이며, 갑오징어의 오적골(Cuttlebone, CB) 또한 천연 CC로 이루어져 있다. 본 연구에서는 오적골의 다양한 전처리 후 직경 5 mm 두께 2 mm의 형태로 가공하여 생체적합성을 평가하고자 하였다. 조직검사에서 결합조직 두께는 2, 4주차 모두 CBHA군에서 가장 유의성 있게 얇았다 (p < 0.05). 이상의 결과들은 CBHA가 생체 내에 적용하는 골대체재로서 생체적합성이 매우 높은 것으로 나타났다. 따라서 CBHA는 편평골에 있어 생체적합성이 뛰어난 골대체재로 그 가치가 있는 것으로 생각되며, 수의 임상에 있어서 활용성이 매우 높을 것으로 사료된다.

Keywords

References

  1. Aalto M, Heppleston AG. Fibrogenesis by mineral fibres: an in-vitro study of the roles of the macrophage and fibre length. Br J Exp Pathol 1984; 65: 91-99.
  2. Bakker D, van Blitterswijk CA, Hesseling SC, Grote JJ. Effect of implantation site on phagocyte/polymer interaction and fibrous capsule formation. Biomaterials 1988; 9: 14-23. https://doi.org/10.1016/0142-9612(88)90064-6
  3. Behling CA, Spector M. Quantitative characterization of cells at the interface of long-term implants of selected polymers. J Biomed Mater Res 1986; 20: 653-666. https://doi.org/10.1002/jbm.820200509
  4. Bosch C, Melsen B, Karin V. Guided bone regeneration in calvarial bone defects using polytetrafluoroethylene membranes. Cleft Palate-Craniofacial Journal 1995; 32: 311-317. https://doi.org/10.1597/1545-1569(1995)032<0311:GBRICB>2.3.CO;2
  5. Butler K, Benghuzzi H, Puckett A. Cytological evaluation of the tissue-implant reaction associated with S/C and I/P implantation of ALCAP and HA bioceramics in vivo. Pathol Res Pract 2001; 197: 29-39. https://doi.org/10.1078/0344-0338-00005
  6. Choi IH, Lee CI. Effectiveness of transplantation by freezedried bone of goat to dogs. Korean J Vet Clin Med 1998; 15: 442-449.
  7. Choung PH. An experimental study of undemineralized freeze-dried human bone. J Korean Assoc Maxillofac Plast Reconstr Surg 1996; 18: 164-174.
  8. Clark AE, Hench LL, Paschall HA. The influence of surface chemistry on implant interface histology: A theoretical basis for implant materials selection. J Biomed Mater Res 1976; 10: 161-174. https://doi.org/10.1002/jbm.820100202
  9. Dupoirieux L, Pourquier D, Neves M, Teot L. Resorption kinetics of eggshell: An in vivo study. J Craniofac Surg 2001a; 12: 53-58. https://doi.org/10.1097/00001665-200101000-00009
  10. Dupoirieux L, Pourquier D, Picot MC, Neves M. Comparative study of three different membranes for guided bone regeneration of rat cranial defects. Int J Oral Maxillofac Surg 2001b; 30: 58-62. https://doi.org/10.1054/ijom.2000.0011
  11. Durmu E, Celik I, Aydin MF, Yildirim G, Sur E. Evaluation of the biocompatibility and osteoproductive activity of ostrich eggshell powder in experimentally induced calvarial defects in rabbits. J Biomed Mater Res Part B: Appl Biomater 2007; 86B: 82-89.
  12. Kim CB, Lee MH, Kim BI, Min BW, Kim MH, Choe ES, Cho HW. Comparative biocompatibility of metal implants in connective tissue of abdominal wall of the mouse. J Toxicol Pub Health 2004; 20: 13-20.
  13. Kim, JJ, Kim HJ, Lee KS. Evaluation of biocompatibility of porous hydroxyapatite developed from edible cuttlefish bone. Key Engineering Materials 2008b; 361: 155-158.
  14. Lee JI, Song HN, Kim NS, Choi IH. Conparison of osteoinductive effect of freezing, freeze-drying and defat-freezing implant preparation for allograft in rabbit. Korean J Vet Res 2007a; 47: 219-228.
  15. Li DJ, Ohsaki K, Li K, Cui PC, Ye Q, Baba K, Wang QC, Tenshin A, Takano-Yamamoto T. Thickness of fibrous capsule after implantation of hydroxyapatite in subcutaneous tissue in rats. J Biomed Mater Res 1999; 45: 322-326. https://doi.org/10.1002/(SICI)1097-4636(19990615)45:4<322::AID-JBM6>3.0.CO;2-2
  16. Matlaga BF, Yasenchak LP, Salthouse TN. Tissue response to implanted polymers: The significance of sample shape. J Biomed Mater Res 1976; 10: 391-397. https://doi.org/10.1002/jbm.820100308
  17. Ryhanen J, Kallioinen M, Tuukkanen J, Junila J, Niemela E, Sandvik P, Serlo W. In vivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: Muscle and perineural tissue responses and encapsule membrane thickness. J Biomed Mater Res 1998; 41: 481-488. https://doi.org/10.1002/(SICI)1097-4636(19980905)41:3<481::AID-JBM19>3.0.CO;2-L
  18. Salthouse TN. Some aspects of macrophage behavior at the implant interface. J Biomed Mater Res 1984; 18: 395-401. https://doi.org/10.1002/jbm.820180407
  19. Sivakumar M, Kumart TSS, Shantha KL, Rao KP. Development of hydroxyapatite derived from Indian coral. Biomaterials 1996; 17: 1709-1714. https://doi.org/10.1016/0142-9612(96)87651-4
  20. White RA, Hirose FM, Sproat RW, Lawrence RS, Nelson RJ. Histopathologic observations after short-term implantation of two porous elastomers in dogs. Biomaterials 1981; 2: 171-176. https://doi.org/10.1016/0142-9612(81)90046-6

Cited by

  1. Cuttlebone as a Marine-Derived Material for Preparing Bone Grafts vol.20, pp.3, 2015, https://doi.org/10.1007/s10126-018-9816-6