• 제목/요약/키워드: osteoclasts

검색결과 310건 처리시간 0.023초

AMD3100 improves ovariectomy-induced osteoporosis in mice by facilitating mobilization of hematopoietic stem/progenitor cells

  • Im, Jin Young;Min, Woo-Kie;Park, Min Hee;Kim, NamOh;Lee, Jong Kil;Jin, Hee Kyung;Choi, Je-Yong;Kim, Shin-Yoon;Bae, Jae-Sung
    • BMB Reports
    • /
    • 제47권8호
    • /
    • pp.439-444
    • /
    • 2014
  • Inhibition of an increase of osteoclasts has become the most important treatment for osteoporosis. The CXCR4 antagonist, AMD3100, plays an important role in the mobilization of osteoclast precursors within bone marrow (BM). However, the actual therapeutic impact of AMD3100 in osteoporosis has not yet been ascertained. Here we demonstrate the therapeutic effect of AMD3100 in the treatment of ovariectomy-induced osteoporosis in mice. We found that treatment with AMD3100 resulted in direct induction of release of SDF-1 from BM to blood and mobilization of hematopoietic stem/progenitor cells (HSPCs) in an osteoporosis model. AMD3100 prevented bone density loss after ovariectomy by mobilization of HSPCs, suggesting a therapeutic strategy to reduce the number of osteoclasts on bone surfaces. These findings support the hypothesis that treatment with AMD3100 can result in efficient mobilization of HSPCs into blood through direct blockade of the SDF-1/CXCR4 interaction in BM and can be considered as a potential new therapeutic intervention for osteoporosis.

Glutaredoxin2 isoform b (Glrx2b) promotes RANKL-induced osteoclastogenesis through activation of the p38-MAPK signaling pathway

  • Yeon, Jeong-Tae;Choi, Sik-Won;Park, Kie-In;Choi, Min-Kyu;Kim, Jeong-Joong;Youn, Byung-Soo;Lee, Myeung-Su;Oh, Jae-Min
    • BMB Reports
    • /
    • 제45권3호
    • /
    • pp.171-176
    • /
    • 2012
  • Receptor activator of NF-${\kappa}B$ ligand (RANKL) triggers the differentiation of bone marrow-derived monocyte/macrophage precursor cells (BMMs) of hematopoietic origin into osteoclasts through the activation of mitogen-activated protein (MAP) kinases and transcription factors. Recently, reactive oxygen species (ROS) and antioxidant enzymes were shown to be closely associated with RANKL-mediated osteoclast differentiation. Although glutaredoxin2 (Glrx2) plays a role in cellular redox homeostasis, its role in RANKL-mediated osteoclastogenesis is unclear. We found that Glrx2 isoform b (Glrx2b) expression is induced during RANKLmediated osteoclastogenesis. Over-expression of Glrx2b strongly enhanced RANKL- mediated osteoclastogenesis. In addition, Glrx2b-transduced BMMs enhanced the expression of key transcription factors c-Fos and NFATc1, but pre-treatment with SB203580, a p38-specific inhibitor, completely blocked this enhancement. Conversely, down-regulation of Glrx2b decreased RANKL- mediated osteoclastogenesis and the expression of c-Fos and NFATc1 proteins. Also, Glrx2b down-regulation attenuated the RANKL-induced activation of p38. Taken together, these results suggest that Glrx2b enhances RANKL-induced osteoclastogenesis via p38 activation.

하수오 물 추출물이 골형성 및 파골세포에 미치는 영향 (Effects of Polygoni Multiflori Radix (PMR) on Osteogenesis and Osteoclasts in vitro)

  • 도윤정;구세광;김홍태;오태호;조영무;김상우;유일선;이근우
    • 한국임상수의학회지
    • /
    • 제28권4호
    • /
    • pp.387-393
    • /
    • 2011
  • Polygoni Multiflori Radix (PMR) a dried root tuber of Polygonum multiflorum Thunberg with bioactivities in bone metabolism is one of the most famous tonic traditional medicines in China, Japan and Korea.To observe the anti-osteoporotic effect of PMR, we observed the effects on proliferation and alkaline phosphatase (ALP) activity of primary osteoblasts, bone nodule formation, pit formation of osteoclasts and osteoclastogenesis in vitro. As the result of that, although PMR extracts have no meaningful changes on the the proliferation of primary osteoblasts, significant (p < 0.01) increases of ALP acitivity of osteoblasts were dose-dependently observed in all PMR extracts treated groups tested compared to that of vehicle control. It means that it enhanced the differentiation (ALP activity) and bone nodule formation of osteoblast. In addition, PMR extracts dose-dependently inhibits the pit formation and the number of multinucleated osteoclast-like cells (OCLs), osteoclastogenesis in vitro. Therefore these results show the possibility of PMR extracts as another anti-osteoporotic agents.

Obatoclax Regulates the Proliferation and Fusion of Osteoclast Precursors through the Inhibition of ERK Activation by RANKL

  • Oh, Ju Hee;Lee, Jae Yoon;Park, Jin Hyeong;No, Jeong Hyeon;Lee, Na Kyung
    • Molecules and Cells
    • /
    • 제38권3호
    • /
    • pp.279-284
    • /
    • 2015
  • Obatoclax, a pan-Bcl2 inhibitor, shows antitumor activities in various solid malignancies. Bcl2-deficient mice have shown the importance of Bcl2 in osteoclasts, as the bone mass of the mice was increased by the induced apoptosis of osteoclasts. Despite the importance of Bcl2, the effects of obatoclax on the proliferation and differentiation of osteoclast precursors have not been studied extensively. Here, we describe the anti-proliferative effects of obatoclax on osteoclast precursors and its negative role on fusion of the cells. Stimulation with low doses of obatoclax significantly suppressed the proliferation of osteoclast precursors in a dose-dependent manner while the apoptosis was markedly increased. Its stimulation was sufficient to block the activation of ERK MAP kinase by RANKL. The same was true when PD98059, an ERK inhibitor, was administered to osteoclast precursors. The activation of JNK1/2 and p38 MAP kinase, necessary for osteoclast differentiation, by RANKL was not affected by obatoclax. Interestingly, whereas the number of TRAP-positive mononuclear cells was increased by both obatoclax and PD98059, fused, multinucleated cells larger than $100{\pm}m$ in diameter containing more than 20 nuclei were completely reduced. Consistently, obatoclax failed to regulate the expression of osteoclast marker genes, including c-Fos, TRAP, RANK and CtsK. Instead, the expression of DC-STAMP and Atp6v0d2, genes that regulate osteoclast fusion, by RANKL was significantly abrogated by both obatoclax and PD98059. Taken together, these results suggest that obatoclax down-regulates the proliferation and fusion of osteoclast precursors through the inhibition of the ERK1/2 MAP kinase pathway.

Oleoylethanolamide Exhibits GPR119-Dependent Inhibition of Osteoclast Function and GPR119-Independent Promotion of Osteoclast Apoptosis

  • Kim, Hyun-Ju;Lee, Dong-Kyo;Jin, Xian;Che, Xiangguo;Choi, Je-Yong
    • Molecules and Cells
    • /
    • 제43권4호
    • /
    • pp.340-349
    • /
    • 2020
  • Oleoylethanolamide (OEA), a bioactive lipid in bone, is known as an endogenous ligand for G protein-coupled receptor 119 (GPR119). Here, we explored the effects of OEA on osteoclast differentiation, function, and survival. While OEA inhibits osteoclast resorptive function by disrupting actin cytoskeleton, it does not affect receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. OEA attenuates osteoclast spreading, blocks actin ring formation, and eventually impairs bone resorption. Mechanistically, OEA inhibits Rac activation in response to macrophage colony-stimulating factor (M-CSF), but not RANKL. Furthermore, the OEA-mediated cytoskeletal disorganization is abrogated by GPR119 knockdown using small hairpin RNA (shRNA), indicating that GPR119 is pivotal for osteoclast cytoskeletal organization. In addition, OEA induces apoptosis in both control and GPR119 shRNA-transduced osteoclasts, suggesting that GPR119 is not required for osteoclast apoptosis. Collectively, our findings reveal that OEA has inhibitory effects on osteoclast function and survival of mature osteoclasts via GPR119-dependent and GPR119-independent pathways, respectively.

Oral bisphosphonates induced osteonecrosis of the mandible : A case report

  • Son, Hyo-Jeong;Jang, Ho-Yeol;Keum, Yun-Seon;Lee, Jang-Yeol;Kim, Hyoun-Chull;Lee, Sang-Chull
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제35권2호
    • /
    • pp.106-111
    • /
    • 2009
  • Bisphosphonates have been approved for Paget's disease, cancer-related hypercalcemia, bone involvement in multiple myeloma or solid tumors and osteoporosis. Although, underlying pathophysiological mechanisms remain unclear, it seems that bisphosphonates inhibit osteoclast precursor cells, modulate migratory and adhesive characteristics and induce apoptosis of osteoclasts. Furthermore impacts on angiogenesis, microenvironment and signal transduction between osteoclasts and osteoblasts. In this report, we present a case of oral bisphosphonates induced osteonecrosis of the mandible in a 84-year-old patient who received for two years. Two tapered screw vent implants(Zimmer, USA) were placed in the area of first and second molar. Two weeks later after crowns restored, some inflammatory signs and symptoms were observed on the second molar area. Sequestrum was formed and the sequestrum was removed with the implant. Frequent follow-up checks and oral hygiene maintenances were done and the first molar implant was restored. There is insufficient evidence suggests that duration of oral bisphosphonate therapy correlates with the development and severity of osteonecrosis. Therefore, dentists should not overlook the possibility of development of bisphosphonate induced osteonecrosis in patients who have taken oral forms of medication for less than three years.

두충의 물 추출물이 파골세포의 분화에 미치는 영향 (Effect of Water Extract of Eucommiae cortex In RANKL-induced Osteoclast Differentiation)

  • 정연태;최윤홍;송정훈;이창훈;이명수;장성조;조해중;곽한복;오재민
    • 동의생리병리학회지
    • /
    • 제23권3호
    • /
    • pp.613-618
    • /
    • 2009
  • Although the effect of Eucommie umoides oliver in osteoporosis has been studied, direct action of Eucommis ulmoides Oliver on osteoclasts remains unknown. Here we examined whether Eucommiae cortex inhibits osteoclast differentiation and bone resorption, a process known to be involved in bone diseases such as osteoporosis. Water extract from Eucommiae cortex (WE-EC) inhibited differentiation of bone marrow macrophages (BMMs) into osteoclasts without causing cytotoxicity. WE-EC suppressed the phosphorylation of p38, ERK, and JNK in BMMs treated with RANKL. WE EC specifically suppressed the mRNA expression of NFATc1 induced by RANKL. However, WE-EC inhibited stability of c-Fos protein induced by RANKL. Furthermore, WE-EC inhibited osteoclast survival induced by RANKL and in turn suppressed bone resorption. Taken together, our results suggest that WE-EC may be better agents for therapeutic use in bone diseases.

한약재 추출물의 조골세포 분화 및 파골세포 형성에 미치는 영향 (Effects of Medicinal Herb Extracts on Osteoblast Differentiation and Osteoclast Formation)

  • 임남경;김현정;김미진;이은주;김혁일;이인선
    • 한국식품과학회지
    • /
    • 제42권5호
    • /
    • pp.637-642
    • /
    • 2010
  • 천연물 유래의 생약에서 조골세포 증식을 높이면서, 파골세포의 분화 억제에 효과가 있는 시료를 검색하고자 15종의 한약재추출물의 효과를 검토해 보았다. Mouse calvaria 유래의 osteoblastic cells를 이용하여 세포 생존률 및 ALP 활성을 측정하였으며, 또한 마우스 골수 세포를 이용하여 M-CSF와 RANKL을 처리하여 파골세포의 분화를 유도한 후, 세포 생존율과 TRAP효소활성을 측정하였다. 그 결과, 두충, 곽향, 개다래, 형개, 정공등 추출물은 조골세포 증식 및 ALP 활성를 증가시켰으며, 파골세포 활성을 나타내는 TRAP활성이 억제되는 것으로 확인되었다. 따라서 이 추출물들은 조골세포의 기능을 향상시키는 동시에 파골세포의 기능을 억제하여 골 흡수와 관련된 질환과 함께 골 질환 예방에 효과가 있을 것으로 생각되어진다.

치주인대 섬유아세포에서 Osteoprotegerin과 Osteoclast Differentiation Factor의 발현 (Expression of Osteoprotegerin and Osteoclast Differentiation Factor in Human Periodontal Ligament Fibroblast Cells)

  • 류성훈;허수례;김형섭;오귀옥
    • Journal of Periodontal and Implant Science
    • /
    • 제32권4호
    • /
    • pp.721-731
    • /
    • 2002
  • Recently, soluble TNF receptor homolog osteoprotegerin(OPG) and its membrane-bound ligand osteoclast differentiation factor(ODF) were found to regulate osteoclast formation and function, and bone metabolism. It is now well established that ODF acts via RANK expressed on hematopoietic osteoclast precursor cells to facilitate their differentiation to osteoclasts, and OPG prevents the formation of osteoclasts by interfering the binding of ODF and RANK. Expression of OPG and ODF was believed to be closely related to the pathogenesis of bone resorption and destruction from osteoporosis, periodontal diseases, malignant bone tumor, and arthritis. The periodontal ligament fibroblasts (PDLF), located between the tooth and tooth socket, has been thought to play an important role in maintaining bone homeostasis of periodontal tissues. However, the exact mechanism by which bone formation and resorption are regulated by PDLF is not well understood. In this study we have prepared primary cultures of human PDLF from periodontium of malaligned tooth extracted due to orthodontic reason, and determined steady state or inflammatory signal-induced OPG and ODF expression using RT-PCR and western blot analysis. OPG and ODF mRNA and protein were expressed constitutively in the PDLF and these expression were slightly increased by osteotropic cytokine IL-1 ${\beta}$. Lipopolysaccharide-treated PDLF showed decrease in OPG mRNA and protein expression, and increase in ODF mRNA and protein expression. These results indicated that PDLF influence the osteoclastogenesis by OPG and ODF expression in the inflammatory situation as well as physiological condition, and thereby pathogenesis of periodontal alveolar bone destruction.

cAMP-response Element-binding Protein Is not Essential for Osteoclastogenesis Induced by Receptor Activator of NF-${\kappa}B$ Ligand

  • Kim, Ha-Neui;Ha, Hyun-Il;Lee, Jong-Ho;Kwak, Han-Bok;Kim, Hong-Hee;Lee, Zang-Hee
    • International Journal of Oral Biology
    • /
    • 제30권4호
    • /
    • pp.143-148
    • /
    • 2005
  • Osteoclasts are multinucleated cells with bone resorbing activity and differentiated from hematopoietic cell lineages of monocyte/macrophages in the presence of receptor activator of NF-${\kappa}B$ ligand (RANKL) and M-CSF. However, the exact molecular mechanisms through which RANKL stimulates osteoclastogenesis remain to be elucidated. Here we report that activation of cAMP-response elementbinding protein (CREB) is not involved in osteoclastogenesis from osteoclast precursors in response to RANKL. RANKL induced CREB activation in osteoclast precursors. Using pharmacological inhibitors, we found that RANKL-induced CREB activation is dependent on p38 MAPK pathways. We also found that ectopic expressions of wild type and dominant negative forms of CREB in osteoclast precursors did not affect RANKL-induced osteoclast formation and bone resorbing activity. Furthermore, dominant negative forms of CREB did not alter the expression levels of osteoclast-specific marker genes. Taken together, these data suggest that CREB is dispensable for differentiation and resorbing activity of osteoclasts.