Browse > Article
http://dx.doi.org/10.14348/molcells.2020.2260

Oleoylethanolamide Exhibits GPR119-Dependent Inhibition of Osteoclast Function and GPR119-Independent Promotion of Osteoclast Apoptosis  

Kim, Hyun-Ju (Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 PLUS KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University)
Lee, Dong-Kyo (Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 PLUS KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University)
Jin, Xian (Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 PLUS KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University)
Che, Xiangguo (Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 PLUS KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University)
Choi, Je-Yong (Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 PLUS KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University)
Abstract
Oleoylethanolamide (OEA), a bioactive lipid in bone, is known as an endogenous ligand for G protein-coupled receptor 119 (GPR119). Here, we explored the effects of OEA on osteoclast differentiation, function, and survival. While OEA inhibits osteoclast resorptive function by disrupting actin cytoskeleton, it does not affect receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. OEA attenuates osteoclast spreading, blocks actin ring formation, and eventually impairs bone resorption. Mechanistically, OEA inhibits Rac activation in response to macrophage colony-stimulating factor (M-CSF), but not RANKL. Furthermore, the OEA-mediated cytoskeletal disorganization is abrogated by GPR119 knockdown using small hairpin RNA (shRNA), indicating that GPR119 is pivotal for osteoclast cytoskeletal organization. In addition, OEA induces apoptosis in both control and GPR119 shRNA-transduced osteoclasts, suggesting that GPR119 is not required for osteoclast apoptosis. Collectively, our findings reveal that OEA has inhibitory effects on osteoclast function and survival of mature osteoclasts via GPR119-dependent and GPR119-independent pathways, respectively.
Keywords
apoptosis; cytoskeleton; G protein-coupled receptor 119; oleoylethanolamide; osteoclast;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lacey, D.L., Timms, E., Tan, H.L., Kelley, M.J., Dunstan, C.R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S., et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165-176.   DOI
2 Lauffer, L.M., Iakoubov, R., and Brubaker, P.L. (2009). GPR119 is essential for oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal enteroendocrine L-cell. Diabetes 58, 1058-1066.   DOI
3 McHugh, K.P., Hodivala-Dilke, K., Zheng, M.H., Namba, N., Lam, J., Novack, D., Feng, X., Ross, F.P., Hynes, R.O., and Teitelbaum, S.L. (2000). Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J. Clin. Invest. 105, 433-440.   DOI
4 McKillop, A.M., Moran, B.M., Abdel-Wahab, Y.H., Gormley, N.M., and Flatt, P.R. (2016). Metabolic effects of orally administered small-molecule agonists of GPR55 and GPR119 in multiple low-dose streptozotocininduced diabetic and incretin-receptor-knockout mice. Diabetologia 59, 2674-2685.   DOI
5 Ofek, O., Karsak, M., Leclerc, N., Fogel, M., Frenkel, B., Wright, K., Tam, J., Attar-Namdar, M., Kram, V., Shohami, E., et al. (2006). Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc. Natl. Acad. Sci. U. S. A. 103, 696-701.   DOI
6 Overton, H.A., Babbs, A.J., Doel, S.M., Fyfe, M.C., Gardner, L.S., Griffin, G., Jackson, H.C., Procter, M.J., Rasamison, C.M., Tang-Christensen, M., et al. (2006). Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab. 3, 167-175.   DOI
7 Provensi, G., Coccurello, R., Umehara, H., Munari, L., Giacovazzo, G., Galeotti, N., Nosi, D., Gaetani, S., Romano, A., Moles, A., et al. (2014). Satiety factor oleoylethanolamide recruits the brain histaminergic system to inhibit food intake. Proc. Natl. Acad. Sci. U. S. A. 111, 11527-11532.   DOI
8 Rossi, F., Siniscalco, D., Luongo, L., De Petrocellis, L., Bellini, G., Petrosino, S., Torella, M., Santoro, C., Nobili, B., Perrotta, S., et al. (2009). The endovanilloid/endocannabinoid system in human osteoclasts: possible involvement in bone formation and resorption. Bone 44, 476-484.   DOI
9 Reeve, J.L., Zou, W., Liu, Y., Maltzman, J.S., Ross, F.P., and Teitelbaum, S.L. (2009). SLP-76 couples Syk to the osteoclast cytoskeleton. J. Immunol. 183, 1804-1812.   DOI
10 Rodriguez de Fonseca, F., Navarro, M., Gomez, R., Escuredo, L., Nava, F., Fu, J., Murillo-Rodriguez, E., Giuffrida, A., LoVerme, J., Gaetani, S., et al. (2001). An anorexic lipid mediator regulated by feeding. Nature 414, 209-212.   DOI
11 Smoum, R., Bar, A., Tan, B., Milman, G., Attar-Namdar, M., Ofek, O., Stuart, J.M., Bajayo, A., Tam, J., Kram, V., et al. (2010). Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass. Proc. Natl. Acad. Sci. U. S. A. 107, 17710-17715.   DOI
12 Stock, K., Kumar, J., Synowitz, M., Petrosino, S., Imperatore, R., Smith, E.S., Wend, P., Purfurst, B., Nuber, U.A., Gurok, U., et al. (2012). Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1. Nat. Med. 18, 1232-1238.   DOI
13 Takayanagi, H. (2007). Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292-304.   DOI
14 Takeshita, S., Kaji, K., and Kudo, A. (2000). Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J. Bone Miner. Res. 15, 1477-1488.   DOI
15 Tam, J., Ofek, O., Fride, E., Ledent, C., Gabet, Y., Muller, R., Zimmer, A., Mackie, K., Mechoulam, R., Shohami, E., et al. (2006). Involvement of neuronal cannabinoid receptor CB1 in regulation of bone mass and bone remodeling. Mol. Pharmacol. 70, 786-792.   DOI
16 Di Paola, M., Bonechi, E., Provensi, G., Costa, A., Clarke, G., Ballerini, C., De Filippo, C., and Passani, M.B. (2018). Oleoylethanolamide treatment affects gut microbiota composition and the expression of intestinal cytokines in Peyer's patches of mice. Sci. Rep. 8, 14881.   DOI
17 Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342.   DOI
18 Chellaiah, M.A., Soga, N., Swanson, S., McAllister, S., Alvarez, U., Wang, D., Dowdy, S.F., and Hruska, K.A. (2000). Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. J. Biol. Chem. 275, 11993-12002.   DOI
19 Croke, M., Ross, F.P., Korhonen, M., Williams, D.A., Zou, W., and Teitelbaum, S.L. (2011). Rac deletion in osteoclasts causes severe osteopetrosis. J. Cell Sci. 124, 3811-3821.   DOI
20 Faccio, R., Teitelbaum, S.L., Fujikawa, K., Chappel, J., Zallone, A., Tybulewicz, V.L., Ross, F.P., and Swat, W. (2005). Vav3 regulates osteoclast function and bone mass. Nat. Med. 11, 284-290.   DOI
21 Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., et al. (1998). Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. U. S. A. 95, 3597-3602.   DOI
22 Fu, J., Gaetani, S., Oveisi, F., Lo Verme, J., Serrano, A., Rodriguez De Fonseca, F., Rosengarth, A., Luecke, H., Di Giacomo, B., Tarzia, G., et al. (2003). Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425, 90-93.   DOI
23 Touaitahuata, H., Blangy, A., and Vives, V. (2014). Modulation of osteoclast differentiation and bone resorption by Rho GTPases. Small GTPases 5, e28119.   DOI
24 Vives, V., Laurin, M., Cres, G., Larrousse, P., Morichaud, Z., Noel, D., Cote, J.F., and Blangy, A. (2011). The Rac1 exchange factor Dock5 is essential for bone resorption by osteoclasts. J. Bone Miner. Res. 26, 1099-1110.   DOI
25 Whyte, L.S., Ryberg, E., Sims, N.A., Ridge, S.A., Mackie, K., Greasley, P.J., Ross, R.A., and Rogers, M.J. (2009). The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc. Natl. Acad. Sci. U. S. A. 106, 16511-16516.   DOI
26 Wong, B.R., Josien, R., Lee, S.Y., Sauter, B., Li, H.L., Steinman, R.M., and Choi, Y. (1997). TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J. Exp. Med. 186, 2075-2080.   DOI
27 Zou, W., Kitaura, H., Reeve, J., Long, F., Tybulewicz, V.L., Shattil, S.J., Ginsberg, M.H., Ross, F.P., and Teitelbaum, S.L. (2007). Syk, c-Src, the alphavbeta3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J. Cell Biol. 176, 877-888.   DOI
28 Idris, A.I., van't Hof, R.J., Greig, I.R., Ridge, S.A., Baker, D., Ross, R.A., and Ralston, S.H. (2005). Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat. Med. 11, 774-779.   DOI
29 Hong, J.M., Teitelbaum, S.L., Kim, T.H., Ross, F.P., Kim, S.Y., and Kim, H.J. (2011). Calpain-6, a target molecule of glucocorticoids, regulates osteoclastic bone resorption via cytoskeletal organization and microtubule acetylation. J. Bone Miner. Res. 26, 657-665.   DOI
30 Idris, A.I., Sophocleous, A., Landao-Bassonga, E., Canals, M., Milligan, G., Baker, D., van’t Hof, R.J., and Ralston, S.H. (2009). Cannabinoid receptor type 1 protects against age-related osteoporosis by regulating osteoblast and adipocyte differentiation in marrow stromal cells. Cell Metab. 10, 139-147.   DOI
31 Ito, Y., Teitelbaum, S.L., Zou, W., Zheng, Y., Johnson, J.F., Chappel, J., Ross, F.P., and Zhao, H. (2010). Cdc42 regulates bone modeling and remodeling in mice by modulating RANKL/M-CSF signaling and osteoclast polarization. J. Clin. Invest. 120, 1981-1993.   DOI
32 Itokowa, T., Zhu, M.L., Troiano, N., Bian, J., Kawano, T., and Insogna, K. (2011). Osteoclasts lacking Rac2 have defective chemotaxis and resorptive activity. Calcif. Tissue Int. 88, 75-86.   DOI
33 Itzstein, C., Coxon, F.P., and Rogers, M.J. (2011). The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases 2, 117-130.   DOI
34 Kim, H.J., Yoon, H.J., Kim, B.K., Kang, W.Y., Seong, S.J., Lim, M.S., Kim, S.Y., and Yoon, Y.R. (2016). G protein-coupled receptor 120 signaling negatively regulates osteoclast differentiation, survival, and function. J. Cell. Physiol. 231, 844-851.   DOI
35 Zou, W., Zhu, T., Craft, C.S., Broekelmann, T.J., Mecham, R.P., and Teitelbaum, S.L. (2010). Cytoskeletal dysfunction dominates in DAP12-deficient osteoclasts. J. Cell Sci. 123, 2955-2963.   DOI
36 Teitelbaum, S.L. (2000). Bone resorption by osteoclasts. Science 289, 1504-1508.   DOI
37 Akiyama, T., Bouillet, P., Miyazaki, T., Kadono, Y., Chikuda, H., Chung, U.I., Fukuda, A., Hikita, A., Seto, H., Okada, T., et al. (2003). Regulation of osteoclast apoptosis by ubiquitylation of proapoptotic BH3-only Bcl-2 family member Bim. EMBO J. 22, 6653-6664.   DOI
38 Karwad, M.A., Macpherson, T., Wang, B., Theophilidou, E., Sarmad, S., Barrett, D.A., Larvin, M., Wright, K.L., Lund, J.N., and O’Sullivan, S.E. (2017). Oleoylethanolamine and palmitoylethanolamine modulate intestinal permeability in vitro via TRPV1 and PPARalpha. FASEB J. 31, 469-481.   DOI
39 Kim, H.J., Kim, B.K., Ohk, B., Yoon, H.J., Kang, W.Y., Cho, S., Seong, S.J., Lee, H.W., and Yoon, Y.R. (2019a). Estrogen-related receptor gamma negatively regulates osteoclastogenesis and protects against inflammatory bone loss. J. Cell. Physiol. 234, 1659-1670.   DOI
40 Kim, H.J., Yoon, H.J., Choi, J.Y., Lee, I.K., and Kim, S.Y. (2014). The tyrosine kinase inhibitor GNF-2 suppresses osteoclast formation and activity. J. Leukoc. Biol. 95, 337-345.   DOI
41 Kim, H.J., Yoon, H.J., Park, J.W., Che, X., Jin, X., and Choi, J.Y. (2019b). G protein-coupled receptor 119 is involved in RANKL-induced osteoclast differentiation and fusion. J. Cell. Physiol. 234, 11490-11499.   DOI
42 Kim, H.J., Zhao, H., Kitaura, H., Bhattacharyya, S., Brewer, J.A., Muglia, L.J., Ross, F.P., and Teitelbaum, S.L. (2006). Glucocorticoids suppress bone formation via the osteoclast. J. Clin. Invest. 116, 2152-2160.   DOI
43 Kim, M.K., Kim, B., Kwon, J.O., Song, M.K., Jung, S., Lee, Z.H., and Kim, H.H. (2019c). ST5 positively regulates osteoclastogenesis via Src/Syk/calcium signaling pathways. Mol. Cells 42, 810-819.   DOI
44 Kong, Y.Y., Yoshida, H., Sarosi, I., Tan, H.L., Timms, E., Capparelli, C., Morony, S., Oliveira-dos-Santos, A.J., Van, G., Itie, A., et al. (1999). OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymphnode organogenesis. Nature 397, 315-323.   DOI