DOI QR코드

DOI QR Code

Oleoylethanolamide Exhibits GPR119-Dependent Inhibition of Osteoclast Function and GPR119-Independent Promotion of Osteoclast Apoptosis

  • Kim, Hyun-Ju (Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 PLUS KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University) ;
  • Lee, Dong-Kyo (Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 PLUS KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University) ;
  • Jin, Xian (Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 PLUS KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University) ;
  • Che, Xiangguo (Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 PLUS KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University) ;
  • Choi, Je-Yong (Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 PLUS KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University)
  • Received : 2019.11.06
  • Accepted : 2019.12.10
  • Published : 2020.04.30

Abstract

Oleoylethanolamide (OEA), a bioactive lipid in bone, is known as an endogenous ligand for G protein-coupled receptor 119 (GPR119). Here, we explored the effects of OEA on osteoclast differentiation, function, and survival. While OEA inhibits osteoclast resorptive function by disrupting actin cytoskeleton, it does not affect receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. OEA attenuates osteoclast spreading, blocks actin ring formation, and eventually impairs bone resorption. Mechanistically, OEA inhibits Rac activation in response to macrophage colony-stimulating factor (M-CSF), but not RANKL. Furthermore, the OEA-mediated cytoskeletal disorganization is abrogated by GPR119 knockdown using small hairpin RNA (shRNA), indicating that GPR119 is pivotal for osteoclast cytoskeletal organization. In addition, OEA induces apoptosis in both control and GPR119 shRNA-transduced osteoclasts, suggesting that GPR119 is not required for osteoclast apoptosis. Collectively, our findings reveal that OEA has inhibitory effects on osteoclast function and survival of mature osteoclasts via GPR119-dependent and GPR119-independent pathways, respectively.

Keywords

References

  1. Akiyama, T., Bouillet, P., Miyazaki, T., Kadono, Y., Chikuda, H., Chung, U.I., Fukuda, A., Hikita, A., Seto, H., Okada, T., et al. (2003). Regulation of osteoclast apoptosis by ubiquitylation of proapoptotic BH3-only Bcl-2 family member Bim. EMBO J. 22, 6653-6664. https://doi.org/10.1093/emboj/cdg635
  2. Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
  3. Chellaiah, M.A., Soga, N., Swanson, S., McAllister, S., Alvarez, U., Wang, D., Dowdy, S.F., and Hruska, K.A. (2000). Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. J. Biol. Chem. 275, 11993-12002. https://doi.org/10.1074/jbc.275.16.11993
  4. Croke, M., Ross, F.P., Korhonen, M., Williams, D.A., Zou, W., and Teitelbaum, S.L. (2011). Rac deletion in osteoclasts causes severe osteopetrosis. J. Cell Sci. 124, 3811-3821. https://doi.org/10.1242/jcs.086280
  5. Di Paola, M., Bonechi, E., Provensi, G., Costa, A., Clarke, G., Ballerini, C., De Filippo, C., and Passani, M.B. (2018). Oleoylethanolamide treatment affects gut microbiota composition and the expression of intestinal cytokines in Peyer's patches of mice. Sci. Rep. 8, 14881. https://doi.org/10.1038/s41598-018-32925-x
  6. Faccio, R., Teitelbaum, S.L., Fujikawa, K., Chappel, J., Zallone, A., Tybulewicz, V.L., Ross, F.P., and Swat, W. (2005). Vav3 regulates osteoclast function and bone mass. Nat. Med. 11, 284-290. https://doi.org/10.1038/nm1194
  7. Fu, J., Gaetani, S., Oveisi, F., Lo Verme, J., Serrano, A., Rodriguez De Fonseca, F., Rosengarth, A., Luecke, H., Di Giacomo, B., Tarzia, G., et al. (2003). Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425, 90-93. https://doi.org/10.1038/nature01921
  8. Hong, J.M., Teitelbaum, S.L., Kim, T.H., Ross, F.P., Kim, S.Y., and Kim, H.J. (2011). Calpain-6, a target molecule of glucocorticoids, regulates osteoclastic bone resorption via cytoskeletal organization and microtubule acetylation. J. Bone Miner. Res. 26, 657-665. https://doi.org/10.1002/jbmr.241
  9. Idris, A.I., Sophocleous, A., Landao-Bassonga, E., Canals, M., Milligan, G., Baker, D., van’t Hof, R.J., and Ralston, S.H. (2009). Cannabinoid receptor type 1 protects against age-related osteoporosis by regulating osteoblast and adipocyte differentiation in marrow stromal cells. Cell Metab. 10, 139-147. https://doi.org/10.1016/j.cmet.2009.07.006
  10. Idris, A.I., van't Hof, R.J., Greig, I.R., Ridge, S.A., Baker, D., Ross, R.A., and Ralston, S.H. (2005). Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat. Med. 11, 774-779. https://doi.org/10.1038/nm1255
  11. Ito, Y., Teitelbaum, S.L., Zou, W., Zheng, Y., Johnson, J.F., Chappel, J., Ross, F.P., and Zhao, H. (2010). Cdc42 regulates bone modeling and remodeling in mice by modulating RANKL/M-CSF signaling and osteoclast polarization. J. Clin. Invest. 120, 1981-1993. https://doi.org/10.1172/JCI39650
  12. Itokowa, T., Zhu, M.L., Troiano, N., Bian, J., Kawano, T., and Insogna, K. (2011). Osteoclasts lacking Rac2 have defective chemotaxis and resorptive activity. Calcif. Tissue Int. 88, 75-86. https://doi.org/10.1007/s00223-010-9435-3
  13. Itzstein, C., Coxon, F.P., and Rogers, M.J. (2011). The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases 2, 117-130. https://doi.org/10.4161/sgtp.2.3.16453
  14. Karwad, M.A., Macpherson, T., Wang, B., Theophilidou, E., Sarmad, S., Barrett, D.A., Larvin, M., Wright, K.L., Lund, J.N., and O’Sullivan, S.E. (2017). Oleoylethanolamine and palmitoylethanolamine modulate intestinal permeability in vitro via TRPV1 and PPARalpha. FASEB J. 31, 469-481. https://doi.org/10.1096/fj.201500132
  15. Kim, H.J., Kim, B.K., Ohk, B., Yoon, H.J., Kang, W.Y., Cho, S., Seong, S.J., Lee, H.W., and Yoon, Y.R. (2019a). Estrogen-related receptor gamma negatively regulates osteoclastogenesis and protects against inflammatory bone loss. J. Cell. Physiol. 234, 1659-1670. https://doi.org/10.1002/jcp.27035
  16. Kim, H.J., Yoon, H.J., Choi, J.Y., Lee, I.K., and Kim, S.Y. (2014). The tyrosine kinase inhibitor GNF-2 suppresses osteoclast formation and activity. J. Leukoc. Biol. 95, 337-345. https://doi.org/10.1189/jlb.0713356
  17. Kim, H.J., Yoon, H.J., Kim, B.K., Kang, W.Y., Seong, S.J., Lim, M.S., Kim, S.Y., and Yoon, Y.R. (2016). G protein-coupled receptor 120 signaling negatively regulates osteoclast differentiation, survival, and function. J. Cell. Physiol. 231, 844-851. https://doi.org/10.1002/jcp.25133
  18. Kim, H.J., Yoon, H.J., Park, J.W., Che, X., Jin, X., and Choi, J.Y. (2019b). G protein-coupled receptor 119 is involved in RANKL-induced osteoclast differentiation and fusion. J. Cell. Physiol. 234, 11490-11499. https://doi.org/10.1002/jcp.27805
  19. Kim, H.J., Zhao, H., Kitaura, H., Bhattacharyya, S., Brewer, J.A., Muglia, L.J., Ross, F.P., and Teitelbaum, S.L. (2006). Glucocorticoids suppress bone formation via the osteoclast. J. Clin. Invest. 116, 2152-2160. https://doi.org/10.1172/JCI28084
  20. Kim, M.K., Kim, B., Kwon, J.O., Song, M.K., Jung, S., Lee, Z.H., and Kim, H.H. (2019c). ST5 positively regulates osteoclastogenesis via Src/Syk/calcium signaling pathways. Mol. Cells 42, 810-819. https://doi.org/10.14348/molcells.2019.0189
  21. Kong, Y.Y., Yoshida, H., Sarosi, I., Tan, H.L., Timms, E., Capparelli, C., Morony, S., Oliveira-dos-Santos, A.J., Van, G., Itie, A., et al. (1999). OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymphnode organogenesis. Nature 397, 315-323. https://doi.org/10.1038/16852
  22. Lacey, D.L., Timms, E., Tan, H.L., Kelley, M.J., Dunstan, C.R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S., et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165-176. https://doi.org/10.1016/S0092-8674(00)81569-X
  23. Lauffer, L.M., Iakoubov, R., and Brubaker, P.L. (2009). GPR119 is essential for oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal enteroendocrine L-cell. Diabetes 58, 1058-1066. https://doi.org/10.2337/db08-1237
  24. McHugh, K.P., Hodivala-Dilke, K., Zheng, M.H., Namba, N., Lam, J., Novack, D., Feng, X., Ross, F.P., Hynes, R.O., and Teitelbaum, S.L. (2000). Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J. Clin. Invest. 105, 433-440. https://doi.org/10.1172/JCI8905
  25. McKillop, A.M., Moran, B.M., Abdel-Wahab, Y.H., Gormley, N.M., and Flatt, P.R. (2016). Metabolic effects of orally administered small-molecule agonists of GPR55 and GPR119 in multiple low-dose streptozotocininduced diabetic and incretin-receptor-knockout mice. Diabetologia 59, 2674-2685. https://doi.org/10.1007/s00125-016-4108-z
  26. Ofek, O., Karsak, M., Leclerc, N., Fogel, M., Frenkel, B., Wright, K., Tam, J., Attar-Namdar, M., Kram, V., Shohami, E., et al. (2006). Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc. Natl. Acad. Sci. U. S. A. 103, 696-701. https://doi.org/10.1073/pnas.0504187103
  27. Overton, H.A., Babbs, A.J., Doel, S.M., Fyfe, M.C., Gardner, L.S., Griffin, G., Jackson, H.C., Procter, M.J., Rasamison, C.M., Tang-Christensen, M., et al. (2006). Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab. 3, 167-175. https://doi.org/10.1016/j.cmet.2006.02.004
  28. Provensi, G., Coccurello, R., Umehara, H., Munari, L., Giacovazzo, G., Galeotti, N., Nosi, D., Gaetani, S., Romano, A., Moles, A., et al. (2014). Satiety factor oleoylethanolamide recruits the brain histaminergic system to inhibit food intake. Proc. Natl. Acad. Sci. U. S. A. 111, 11527-11532. https://doi.org/10.1073/pnas.1322016111
  29. Reeve, J.L., Zou, W., Liu, Y., Maltzman, J.S., Ross, F.P., and Teitelbaum, S.L. (2009). SLP-76 couples Syk to the osteoclast cytoskeleton. J. Immunol. 183, 1804-1812. https://doi.org/10.4049/jimmunol.0804206
  30. Rodriguez de Fonseca, F., Navarro, M., Gomez, R., Escuredo, L., Nava, F., Fu, J., Murillo-Rodriguez, E., Giuffrida, A., LoVerme, J., Gaetani, S., et al. (2001). An anorexic lipid mediator regulated by feeding. Nature 414, 209-212. https://doi.org/10.1038/35102582
  31. Rossi, F., Siniscalco, D., Luongo, L., De Petrocellis, L., Bellini, G., Petrosino, S., Torella, M., Santoro, C., Nobili, B., Perrotta, S., et al. (2009). The endovanilloid/endocannabinoid system in human osteoclasts: possible involvement in bone formation and resorption. Bone 44, 476-484. https://doi.org/10.1016/j.bone.2008.10.056
  32. Smoum, R., Bar, A., Tan, B., Milman, G., Attar-Namdar, M., Ofek, O., Stuart, J.M., Bajayo, A., Tam, J., Kram, V., et al. (2010). Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass. Proc. Natl. Acad. Sci. U. S. A. 107, 17710-17715. https://doi.org/10.1073/pnas.0912479107
  33. Stock, K., Kumar, J., Synowitz, M., Petrosino, S., Imperatore, R., Smith, E.S., Wend, P., Purfurst, B., Nuber, U.A., Gurok, U., et al. (2012). Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1. Nat. Med. 18, 1232-1238. https://doi.org/10.1038/nm.2827
  34. Takayanagi, H. (2007). Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292-304. https://doi.org/10.1038/nri2062
  35. Takeshita, S., Kaji, K., and Kudo, A. (2000). Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J. Bone Miner. Res. 15, 1477-1488. https://doi.org/10.1359/jbmr.2000.15.8.1477
  36. Tam, J., Ofek, O., Fride, E., Ledent, C., Gabet, Y., Muller, R., Zimmer, A., Mackie, K., Mechoulam, R., Shohami, E., et al. (2006). Involvement of neuronal cannabinoid receptor CB1 in regulation of bone mass and bone remodeling. Mol. Pharmacol. 70, 786-792. https://doi.org/10.1124/mol.106.026435
  37. Teitelbaum, S.L. (2000). Bone resorption by osteoclasts. Science 289, 1504-1508. https://doi.org/10.1126/science.289.5484.1504
  38. Touaitahuata, H., Blangy, A., and Vives, V. (2014). Modulation of osteoclast differentiation and bone resorption by Rho GTPases. Small GTPases 5, e28119. https://doi.org/10.4161/sgtp.28119
  39. Vives, V., Laurin, M., Cres, G., Larrousse, P., Morichaud, Z., Noel, D., Cote, J.F., and Blangy, A. (2011). The Rac1 exchange factor Dock5 is essential for bone resorption by osteoclasts. J. Bone Miner. Res. 26, 1099-1110. https://doi.org/10.1002/jbmr.282
  40. Whyte, L.S., Ryberg, E., Sims, N.A., Ridge, S.A., Mackie, K., Greasley, P.J., Ross, R.A., and Rogers, M.J. (2009). The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc. Natl. Acad. Sci. U. S. A. 106, 16511-16516. https://doi.org/10.1073/pnas.0902743106
  41. Wong, B.R., Josien, R., Lee, S.Y., Sauter, B., Li, H.L., Steinman, R.M., and Choi, Y. (1997). TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J. Exp. Med. 186, 2075-2080. https://doi.org/10.1084/jem.186.12.2075
  42. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., et al. (1998). Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. U. S. A. 95, 3597-3602. https://doi.org/10.1073/pnas.95.7.3597
  43. Zou, W., Kitaura, H., Reeve, J., Long, F., Tybulewicz, V.L., Shattil, S.J., Ginsberg, M.H., Ross, F.P., and Teitelbaum, S.L. (2007). Syk, c-Src, the alphavbeta3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J. Cell Biol. 176, 877-888. https://doi.org/10.1083/jcb.200611083
  44. Zou, W., Zhu, T., Craft, C.S., Broekelmann, T.J., Mecham, R.P., and Teitelbaum, S.L. (2010). Cytoskeletal dysfunction dominates in DAP12-deficient osteoclasts. J. Cell Sci. 123, 2955-2963. https://doi.org/10.1242/jcs.069872

Cited by

  1. GPR119 and GPR55 as Receptors for Fatty Acid Ethanolamides, Oleoylethanolamide and Palmitoylethanolamide vol.22, pp.3, 2020, https://doi.org/10.3390/ijms22031034
  2. Modulation of Endocannabinoid Tone in Osteoblastic Differentiation of MC3T3-E1 Cells and in Mouse Bone Tissue over Time vol.10, pp.5, 2020, https://doi.org/10.3390/cells10051199