• Title/Summary/Keyword: osmotic solution

Search Result 152, Processing Time 0.024 seconds

Assessment of Power Generation by Pressure Retarded Osmosis Process from Spiral-Wound Membrane Pilot-Plant (나권형 모듈을 이용한 압력지연삼투 공정의 에너지생산에 관한 연구)

  • Go, Gil hyun;Park, Tae shin;Kang, Lim seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.476-481
    • /
    • 2016
  • Pressure retarded osmosis (PRO) is a quite new technique for power generation using an osmotically driven membrane process. In the PRO process, water permeates through a semipermeable membrane from a low concentration feed solution to a high concentration draw solution due to osmotic pressure. This study carried out to evaluate the performance of the 8 in spiral wound membrane module using reverse osmosis concentrate for a draw solution and reverse osmosis permeate for a feed solution. Three different flowrates of draw and feed solution, such as 2.4 L/min, 5.0 L/min, and 10.0 L/min were used to estimate the power density and water flux under various range of hydraulic pressure differences between 5 bar and 30 bar. In addition, the effects of feed and draw solution concentration, flowrate, and mixing ratio on 8 in spiral wound PRO membrane module performance were investigated in this study. As major results, increases of the draw solution concentration lead to the improvement of power denstiy, and water flux. Also, increase of flowrate resulted in the improvement of power density and water flux. In addition, optimal mixing ratio of draw and feed solution inlet flowrate was found to be 1:1 to attain a maximum power denstiy.

Phytochemical-based Tannic Acid Derivatives as Draw Solutes for Forward Osmosis Process (정삼투 공정의 유도용질로서의 식물 화학물질 기반의 탄닌산 유도체)

  • Kim, Taehyung;Ju, Changha;Kang, Hyo
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.157-168
    • /
    • 2018
  • Potassium tannate (TA-K), which is prepared by base treatment of the bio-renewable tannic acid (TA), was evaluated for its potential application as a draw solute for water purification by forward osmosis. The forward osmosis and recovery properties of TA-K were systematically investigated. In the application of forward osmosis through the active layer facing feed solution (AL-FS) method, the water flux of TA-K draw solution was significantly higher than that of the TA draw solution, while that of the latter was not identified. At a low concentration of 100 mM, the osmotic pressure (1,135 mOsmol/kg) of the TA-K draw solution was approximately 6.5 times that (173 mOsmol/kg) of the NaCl draw solution. Furthermore, the water flux and specific salt flux (6.14 LMH, 1.26 g/L) of the TA-K draw solution at 100 mM were approximately 2.5 and 0.5 times those of the NaCl draw solution (2.46 LMH, 2.63 g/L) at the same concentration, respectively. For reuse, TA-K was precipitated by using a metal ion and recovered through membrane filtration. This study demonstrates the applicability of a phytochemical material as a draw solute for forward osmosis.

A Study on an Effective Decellularization Technique for a Xenograft Cardiac Valve: the Effect of Osmotic Treatment with Hypotonic Solution (이종 심장 판막 이식편에서 효과적인 탈세포화 방법에 관한 연구; 저장성 용액(hypotonic solution)의 삼투압 처치법 효과)

  • Sung, Si-Chan;Kim, Yong-Jin;Choi, Sun-Young;Park, Ji-Eun;Kim, Kyung-Hwan;Kim, Woong-Han
    • Journal of Chest Surgery
    • /
    • v.41 no.6
    • /
    • pp.679-686
    • /
    • 2008
  • Background: Cellular remnants in the bioprosthetic heart valve are known to be related to a host's immunologic response and they can form the nidus for calcification. The extracellular matrix of the decellularized valve tissue can also be used as a biological scaffold for cell attachment, endothelialization and tissue reconstitution. Thus, decellularization is the most important part in making a bioprosthetic valve and biological caffold. Many protocols and agents have been suggested for decellularization, yet there ave been few reports about the effect of a treatment with hypotonic solution prior to chemical or enzymatic treatment. This study investigated the effect of a treatment with hypotonic solution and the appropriate environments such as temperature, the treatment duration and the concentration of sodium dodecylsulfate (SDS) for achieving proper decellularization. Material and Method: Porcine aortic valves were decellularized with odium dodecylsulfate at various concentrations (0.25%, 0.5%), time durations (6, 12, 24 hours) and temperatures ($4^{\circ}C$, $20^{\circ}C$)(Group B). Same the number of porcine aortic valves (group A) was treated with hypotonic solution prior to SDS treatment at the same conditions. The duration of exposure to the hypotonic solution was 4, 7 and 14 hours and he temperature was $4^{\circ}C$ and $20^{\circ}C$, respectively. The degree of decellularization was analyzed by performing hematoxylin and eosin staining. Result: There were no differences in the degree of decellularization between the two concentrations (0.25% 0.5%) of SDS. Twenty four hours treatment with SDS revealed the best decellularization effect for both roups A and B at the temperature of $4^{\circ}C$, but there was no differences between the roups at $20^{\circ}C$. Treatment with hypotonic solution (group A) showed a better ecellularization effect at all the matched conditions. Fourteen hours treatment at $4^{\circ}C$ ith ypotonic solution prior to 80S treatment revealed the best decellularization effect. The treatment with hypotonic solution at $20^{\circ}C$ revealed a good decellularization effect, but his showed significant extracellular matrix destruction. Conclusion: The exposure of porcine heart valves to hypotonic solution prior to SDS treatment is highly effective for achieving decellularization. Osmotic treatment with hypotonic solution should be considered or achieving decellularization of porcine aortic valves. Further study should be carried out to see whether the treatment with hypotonic solution could reduce the exposure duration and concentration of chemical detergents, and also to evaluate how the structure of the extracellular matrix of the porcine valve is affected by the exposure to hypotonic solution.

A Study of Dewatering Phenomena of Potato Slice Cytorrhysed by High Molecules (고분자 용액의 세포 압착 현상에 의한 감자 절편의 탈수 현상에 관한 연구)

  • Choi, Dong-Won;Shin, Hae-Hun;Kim, Jong-Geu
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.4
    • /
    • pp.358-365
    • /
    • 2006
  • To study simultaneous water and solute transport kinetics during soaking in concentrated solution, the influence of the concentration and molecular weight of the solute(polyethylene glycol(PEG) and NaCl) in the soaking solution and the temperature on the water loss and solute gain rates were observed by using a model vegetable tissue(potato). When potato slices$(4cm{\times}4cm{\times}0.1cm)$ soaked in 60% PEG solutions, the water loss rate of the early phase decreased with increasing of the molecular weight of PEG from 200 to 6,000, while the final water loss increased with increasing the molecular weight of PEG and it reached to 80%. The cell wall of potato tissue was permeable to NaCl and PEGs of which average molecular weight is smaller than 400 but it was not permeable to PEG 600 and larger molecules. PEG which has average molecular weight below 600 induced plasmolysis and those above 600 induced cytorrhysis. The water loss rate of potato sample soaked in smaller molecular weight PEG solution was faster than those soaked in higher molecular weight PEG solution before cytorrhysis happened. The water loss rate was reversed after cytorrhysis happened. The volume change of potato within the first 60 minutes was larger in low molecular PEG solution but the final ratio of decreasing volume was larger in high molecular PEG solutions. In PEG 200 solution, the potato tissue was slightly shrinked without shape change. However, in PEG 4,000 solution, volume of potato was reduced significantly and potato tissue was twisted.

EFFECT OF SEASON ON SEMINAL CHARACTERISTICS OF HOLSTEIN BULL UNDER SEMI-ARID ENVIRONMENT I. BIOPHYSICAL CHARACTERISTICS

  • Salah, M.S.;El-Nouty, F.D.;Al-Hajri, M.R.;Mogawer, H.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.439-447
    • /
    • 1992
  • Eight healthy Holstein bulls, 4-6 years old were used to study the effect of season of the year on the biophysical characteristics of semen. Semen was collected twice a week by AV (artificial vagina) over one-year period. The analyses revealed that all the basic seminal traits studied were differed significantly due to season, except the ejaculate volume and consistency and the percentage of swollen spermatozoa in a hypo-osmotic fructose-citrate solution. Ejaculates collected during hot summer season had significantly lower sperm motility, concentration and total counts, and higher percentage of dead spermatozoa than those collected during winter time. Warm spring had moderate semen quality. The temperature-humidity index was calculated and it was associated (p < 0.01) negatively with the ejaculate pH, sperm concentration and total counts, and positively with the % of dead sperms. Ejaculate volume, percentage of swollen spermatozoa, individual motilities did not correlate significantly with the change in temperature-humidity index values. The total live, motile spermatozoa per ejaculate during both the winter and spring seasons showed significant increase of about 37% and 32% respectively over the summer season. Also, rectal temperatures of the bulls were elevated during the hot summer season, while the values of blood hemoglobin and packed-cell volume were decreased.

Fabrication of Frozen Alginate Particles Containing Hypochlorous Acid(HOCl) (차아염소산수(HOCl)를 포함한 알지네이트 냉동 입자의 제작)

  • Jung, Sejin;Lee, Jinkee
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.26-32
    • /
    • 2017
  • Hypochlorous acid(HOCl) is a chemical that is a safe sanitizer and disinfectant approved by the Food and Drug Administration as a food additive, exhibiting strong sterilizing power with low effective chlorine concentration of pH 5.0-6.5 and effective chlorine concentration 10-80 ppm. To apply to fishery industries, we develope the HOCl ice for store or delivery of fishery products. However when HOCl is being frozen, the contained HOCl are expelled out from the ice due to the molecular structures of ice; there is no space to contain HOCl inside. To increase chlorine containing amount in ice, we develop the alginate particles containing HOCl which is bio comparable since alginate is a natural polymer extracted from the brown algae and it is widely used for drug delivery and containing substances, etc. We produce HOCl with water as base solution suppressing osmotic flow from fishery products, and mix it with the developed alginate particles and made HOCl-alginate ice and checked the remaining amount of HOCl. We measure the change of pH and chlorine concentration optimizing the best concentration of alginate particles. Finally, we produce the alginate particle HOCl ices with respect to the alginate's optimal concentration.

Analysis of the Salt Separation and Concentration Using Counter-current Reverse Osmosis Spiral Wound Module (향류식 역삼투 나권형 모듈을 이용한 염분리농축 특성 해석)

  • 조한욱;민병렬;최광호
    • Membrane Journal
    • /
    • v.4 no.3
    • /
    • pp.142-151
    • /
    • 1994
  • Counter-current type reverse osmosis spiral wound module was manufactured for the separation and concentration of salf solution. The ratio of permeate volumetric flow rate vs. brine volumetric flow rate was effective parameter between rejection and degree of cocentration. The reflection coefficient was correspondent to the relation between rejection and degree of cocentration by Spiegler-Kedem model. Counter-current reverse osmosis process had more osmotic pressure drop effect and more degree of concentration than general reverse osmosis process. As a result of computer calculation, the extension of module length than module diameter was more effective for the increase of degree of concentration.

  • PDF

Effect of Trehalose on Biological Membranes with Respect to Phase of the Membranes

  • Park, Jin-Won
    • KSBB Journal
    • /
    • v.32 no.2
    • /
    • pp.103-107
    • /
    • 2017
  • The effect of the trehalose incorporation on the biological membranes was investigated with respect to the phase of the membranes using the fluorescence intensity change. Spherical phospholipid bilayers, vesicles, were prepared only with the variation in the phase of each layer via a double emulsion technique. In the aqueous inside of the vesicles, 8-Aminonaphthalene-1,3,6-trisulfonic acid disodium salt(ANTS) was encapsulated. As a quencher, p-Xylene-bis(N-pyridinium bromide)(DPX) was included in the buffer where the vesicles were dispersed. The fluorescence scale was calibrated with the fluorescence of ANTS vesicles in p-Xylene-bis(N-pyridinium bromide)(DPX)-included-buffer taken as 100% fluorescence and the mixture of ANTS and DPX in the buffer as 0% fluorescence. Trehalose injection into the vesicle solution led the distortion of the membrane. It was found that the distortion was related to the phase of each layer the vesicle up on the ratio of trehalose to lipid. In the identical measurements at glucose, the behavior of the distortion was completely different from that of trehalose. These results seem to depend on the stability of the vesicles, due to the osmotic and volumetric effects on the headgroup packing disruption.

QUALITY ORANGES IN SHUCKED SEA MUSSEL MYTILUS EDULIS (박신 진주담치 수송 중의 품질변화)

  • LEE Byeong-Ho;LEE Jong-Gap;CHOE Ho-Yeon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.8 no.4
    • /
    • pp.208-212
    • /
    • 1975
  • The study was conducted to determine the optimum conditions for keeping quality of shucked sea mussel, Mytilus edulis, during marketing under commercial handling. As quality factors, water holding capacity, pH, VBN and TMA content were measured. Water holding capacity was obviously affected by salt content of the sea mussel meat. Water was released at the salinity above $2.8\%$ and absorbed below the value. In case of distilled water added instead salt solution, $23.3\%$ weight was gained. Absorbing or releasing water of sea mussel meat was also influenced by temperature showing either water gain or loss was greater at, $3^{\circ}C\;than\;25^{\circ}C$. Osmotic quilibrium by salt between meat and liquor was held within 4 hours. The pH value of fresh sea mussle marked 6.0 which is somewhat lower when compared with that of other shellfishes, and it gradually decreased to 5.0 during storage. VBN contents of fresh muscle and shell liquor were $2.1mg\%$ and $1mg\%$ respectively. The sour odour began to be detectable with $5.0mg\%$ of VBN content. TMA in the sea mussel was not detected.

  • PDF

향류식 역삼투 농축공정을 이용한 NaCl 용액의 농축연구

  • 조한욱
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.04b
    • /
    • pp.3-10
    • /
    • 1997
  • 제염농축공정은 증류, 증발법을 일반적으로 사용하나, 에너지 절약차원에서 전기투석 (Electro dialysis)장치를 증발기 선단에 도입한 복합공정을 국내에서도 사용하고 있는 실정이다. 그러나, 전기투석장치는 전기적인 소모와 막의 재생, 교체처리비가 문제점이 되므로 역삼투 장치를 제염농축 공정 최선단에 도입한 복합공정을 이용할 경우 전기 투석 및 증발 복합공정에 비해 40%의 에너지 절감 효과를 기대할 수 있다. 이와 같은 장점에도 불구하고 역삼투 공정은 공급용액의 삼투압보다 큰 적용압력을 막표면에 가하여 물질분리를 수행하므로 농축공정에서 유발되는 배제액 농도의 상승은 삼투압의 증가를 일으켜 실적적용압력의 효과를 떨어뜨리게 되며 결과적으로 농축효과를 감소시키게 된다. 본 연구에서는 효과적인 염농축 공정을 위하여 막모듈 투과부에 고농도 삼투압 감소액(osmotic sink solution)을 향류식(막투과흐름을 맞받아치며 흐르는 방식)으로 유입시키는 향류식 역삼투 (counter-current reverse osmosis, CCRO) 나권형 모듈을 고안 제작하였으며, 제작된 모듈을 기존 역삼투 공정과 향류식 염삼투 공정에 적용하여 염농축도의 성능을 상호 비교하고 염농축에 관계되는 공급농도, 공급유량, 투과유량, 배제유량, 향류 유입유량, 압력구배, 삼투압차 및 농축단수 등의 인자들을 이용하여 두 공정에 대한 염농축 분리조작의 제반조건과 제작된 모듈 내의 농축관련 특성을 실험 및 수치적으로 비교, 고찰하였다.

  • PDF