Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.3.157

Phytochemical-based Tannic Acid Derivatives as Draw Solutes for Forward Osmosis Process  

Kim, Taehyung (Department of Chemical Engineering, Dong-A University)
Ju, Changha (Department of Chemical Engineering, Dong-A University)
Kang, Hyo (Department of Chemical Engineering, Dong-A University)
Publication Information
Membrane Journal / v.28, no.3, 2018 , pp. 157-168 More about this Journal
Abstract
Potassium tannate (TA-K), which is prepared by base treatment of the bio-renewable tannic acid (TA), was evaluated for its potential application as a draw solute for water purification by forward osmosis. The forward osmosis and recovery properties of TA-K were systematically investigated. In the application of forward osmosis through the active layer facing feed solution (AL-FS) method, the water flux of TA-K draw solution was significantly higher than that of the TA draw solution, while that of the latter was not identified. At a low concentration of 100 mM, the osmotic pressure (1,135 mOsmol/kg) of the TA-K draw solution was approximately 6.5 times that (173 mOsmol/kg) of the NaCl draw solution. Furthermore, the water flux and specific salt flux (6.14 LMH, 1.26 g/L) of the TA-K draw solution at 100 mM were approximately 2.5 and 0.5 times those of the NaCl draw solution (2.46 LMH, 2.63 g/L) at the same concentration, respectively. For reuse, TA-K was precipitated by using a metal ion and recovered through membrane filtration. This study demonstrates the applicability of a phytochemical material as a draw solute for forward osmosis.
Keywords
draw solute; forward osmosis; tannic acid; recovery;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 N. Akther, A. Sodiq, A. Giwa, S. Daer, H. A. Arafat, and S. W. Hasan, "Recent advancements in forward osmosis desalination: A review", Chem. Eng. J., 281, 502 (2015).   DOI
2 M. Wilf, "Future of the osmotic processes", Desalin. Water Treat., 15, 292 (2010).   DOI
3 L. Chekli, S. Phuntsho, H. K. Shon, S. Vigneswaran, J. Kandasamy, and A. Chanan, "A review of draw solutes in forward osmosis process and their use in modern applications", Desalin. Water Treat., 43, 167 (2012).   DOI
4 Q. C. Ge, M. M. Ling, and T. S. Chung, "Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future", J. Membrane Sci., 442, 225 (2013).   DOI
5 B.-M. Jun, S.-W. Han, Y.-K. Kim, N. T. P. Nga, H.-G. Park, and Y.-N. Kwon, "Conditions for ideal draw solutes and current research trends in the draw solutes for forward osmosis process", Membr. J., 25, 132 (2015).   DOI
6 T. Y. Cath, A. E. Childress, and M. Elimelech, "Forward osmosis: principles, applications, and recent developments", J. Membr. Sci., 281, 70 (2006).   DOI
7 R. E. Kravath and J. A. Davis, "Desalination of sea water by direct osmosis", Desalination, 16, 151 (1975).   DOI
8 J. O. Kessler and C. D. Moody, "Drinking water from sea water by forward osmosis", Desalination, 18, 297 (1976).   DOI
9 S. Phuntsho, H. K. Shon, S. Hong, S. Lee, and S. Vigneswaran, "A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating the performance of fertilizer draw solutions", J. Membr. Sci., 375, 172 (2011).   DOI
10 J. R. McCutcheon, R. L. McGinnis, and M. Elimelech, "A novel ammonia-carbon dioxide forward (direct) osmosis desalination process", Desalination, 174, 1 (2005).   DOI
11 G. W. Batchelder, "Process for the demineralization of water", US Patent 3,171,799, March 2 (1965).
12 K. Soppimath, T. Aminabhavi, A. Dave, S. Kumbar, and W. Rudzinski, "Stimulus-responsive "Smart" hydrogels as novel drug delivery systems", Drug Dev. Ind. Pharm., 28, 957 (2002).   DOI
13 H. Luo, Q. Wang, T. C. Zhang, T. Tao, A. Zhou, L. Chen, and X. Bie, "A review on the recovery methods of draw solutes in forward osmosis", J. Water Process Eng., 4, 212 (2014).   DOI
14 Z. Wei, Q. Yu, and Z. Gan, "Thermosensitive block copolymers PEG-b-PBEMAGG containing functional pendant amino groups", Macromol. Res., 20, 313 (2012).   DOI
15 T. Maeda, Y. Akasaki, K. Yamamoto, and T. Aoyagi, "Stimuli-responsive coacervate induced in binary functionalized poly(N-isopropylacrylamide) aqueous system and novel method for preparing semi-IPN microgel using the coacervate", Langmuir, 25, 9510 (2009).   DOI
16 D. Li, X. Zhang, J. Yao, G. P. Simon, and H. Wang, "Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination", Chem. Commun., 47, 1710 (2011).   DOI
17 J. Kim, H. Kang, Y.-S. Choi, Y. A. Yu, and J.-C. Lee, "Thermo-responsive oligomeric poly(tetrabutylphosphonium styrenesulfonate)s as draw solutes for forward osmosis (FO) applications", Desalination, 381, 84 (2016).   DOI
18 Y. Zhong, X. Feng, W. Chen, X. Wang, K.-W. Huang, Y. Gnanou, and Z. Lai, "Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water", Environ. Sci. Technol., 50, 1039 (2016).   DOI
19 J. Kim, J. S. Chung, H. Kang, Y. A. Yu, W. J. Choi, H. J. Kim, and J.-C. Lee, "Thermo-responsive copolymers with ionic group as novel draw solutes for forward osmosis processes", Macromol. Res., 22, 963 (2014).   DOI
20 H. W. Bai, Z. Y. Liu, and D. D. Sun, "Highly water soluble and recovered dextran coated $Fe_3O_4$ magnetic nanoparticles for brackish water desalination", Sep. Purif. Technol., 81, 392 (2011).   DOI
21 Q. C. Ge, J. C. Su, T.-S. Chung, and G. Amy, "Hydrophilic superparamagnetic nanoparticles: synthesis, characterization, and performance in forward osmosis processes", Ind. Eng. Chem. Res., 50, 382 (2011).   DOI
22 M. M. Ling, K. Y. Wang, and T.-S. Chung, "Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse", Ind. Eng. Chem. Res., 49, 5869 (2010).   DOI
23 P. Dey and E. L. Izake, "Magnetic nanoparticles boosting the osmotic efficiency of a polymeric FO draw agent: Effect of polymer conformation", Desalination, 373, 79 (2015).   DOI
24 W. T. Hough, "Forward-osmosis solvent extraction", US Patent 3,721,621, March 20 (1973).
25 E. Tian, C. Hu, Y. Qin, Y. Ren, X. Wang, X. Wang, P. Xiao, and X. Yang, "A study of poly(sodium 4-styrenesulfonate) as draw solute in forward osmosis", Desalination, 360, 130 (2015).   DOI
26 B. S. Frank, "Desalination of sea water", US Patent 3,670,897, June 20 (1972).
27 M. L. Stone, C. Rae, F. F. Stewart, and A. D. Wilson, "Switchable polarity solvents as draw solutes for forward osmosis", Desalination, 312, 124 (2013).   DOI
28 Q. Ge, J. Su, G. L. Amy, and T.-S. Chung, "Exploration of polyelectrolytes as draw solutes in forward osmosis processes", Water Res., 46, 1318 (2012).   DOI
29 S. Adham, J. Oppenheimer, L. Liu, and M. Kumar, "Dewatering reverse osmosis concentrate from water reuse applications using forward osmosis", Water Reuse Foundation, Alexandria (2007).
30 A. Achilli, T. Y. Cath, and A. E. Childress, "Selection of inorganic-based draw solutions for forward osmosis applications", J. Membr. Sci., 364, 233 (2010).   DOI
31 Q. Ge and T.-S. Chung, "Oxalic acid complexes: promising draw solutes for forward osmosis (FO) in protein enrichment", Chem. Commun., 51, 4854 (2015).   DOI
32 Y. T. Zhao, Y. W. Ren, X. Z. Wang, P. Xiao, E. L. Tian, X. Wang, and J. Li, "An initial study of EDTA complex based draw solutes in forward osmosis process", Desalination, 378, 28 (2016).   DOI
33 A. Razmjou, M. R. Barati, G. P. Simon, K. Suzuki, and H. T. Wang, "Fast deswelling of nanocomposite polymer hydrogels via magnetic field-induced heating for emerging FO desalination", Environ. Sci. Technol., 47, 6297 (2013).   DOI
34 S. K. Yen, M. Su, K. Y. Wang, and T.-S. Chung, "Study of draw solutes using 2-methylimidazole-based compounds in forward osmosis", J. Membr. Sci., 364, 242 (2010).   DOI
35 M. C. Figueroa-Espinoza, A. Zafimahova, P. G. M. Alvarado, E. Dubreucq, and C. Poncet-Legrand, "Grape seed and apple tannins: Emulsifying and antioxidant properties", Food Chem., 178, 38 (2015).   DOI
36 M. N. Belgacem and A. Gandini, "Monomers, polymers and composites from renewable resources, Elsevier, Amsterdam (2011).
37 K. Khanbabaee and T. van Ree, "Tannins: Classification and definition", Nat. Prod. Rep., 18, 641 (2001).   DOI
38 V. L. Singleton, "Naturally occurring food toxicants: Phenolic substances of plant origin common in foods", Adv. Food Res., 27, 149 (1981).
39 K.-T. Chung, S. E. Stevens Jr, W.-F. Lin, and C. I. Wei, "Growth inhibition of selected food-borne bacteria by tannic acid, propyl gallate and related compounds", Lett. Appl. Microbiol., 17, 29 (1993).   DOI
40 K.-T. Chung, G. Zhao, E. Stevens Jr, B. A. Simco, and C. I. Wei, "Growth inhibition of selected aquatic bacteria by tannic acid and related compounds", J. Aquat. Anim. Health, 7, 46 (1995).   DOI
41 E. M. Daniel and G. D. Stoner, "The effects of ellagic acid and 13-cis-retinoic acid on N-nitrosobenzylmethylamine-induced esophageal tumorigenesis in rats", Cancer Lett., 56, 117 (1991).   DOI
42 I. Gulcin, Z. Huyut, M. Elmastas, and H. Y. Aboul-Enein, "Radical scavenging and antioxidant activity of tannic acid", Arabian J. Chem., 3, 43 (2010).   DOI
43 C. A. Rice-Evans, N. J. Miller, and G. Paganga, "Structure-antioxidant activity relationships of flavonoids and phenolic acids", Free Radical Biol. Med., 20, 933 (1996).   DOI
44 Z. Xia, A. Singh, W. Kiratitanavit, R. Mosurkal, J. Kumar, and R. Nagarajan, "Unraveling the mechanism of thermal and thermo-oxidative degradation of tannic acid", Thermochim. Acta, 605, 77 (2015).   DOI
45 J. S. Wright, E. R. Johnson, and G. A. DiLabio, "Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants", J. Am. Chem. Soc., 123, 1173 (2001).   DOI
46 B. Badhani, N. Sharma, and R. Kakkar, "Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications", RSC Adv., 5, 27540 (2015).   DOI
47 J. Iglesias, E. G. De Saldaña, and J. Jaen, "On the tannic acid interaction with metallic iron", Hyperfine Interact., 134, 109 (2001).   DOI
48 M. Ozacar, C. Soykan, and I. A. Sengil, "Studies on synthesis, characterization, and metal adsorption of mimosa and valonia tannin resins", J. Appl. Polym. Sci., 102, 786 (2006).   DOI
49 Q. Ge, P. Wang, C. Wan, and T.-S. Chung, "Polyelectrolyte-promoted forward osmosis-membrane distillation (FO-MD) hybrid process for dye wastewater treatment", Environ. Sci. Technol., 46, 6236 (2012).   DOI
50 W. D. Kemper and N. A. Evans, "Movement of water as effected by free energy and pressure gradients III. restriction of solutes by membranes", Soil Sci. Soc. Am. J., 27, 485 (1963).   DOI
51 N. T. Hancock and T. Y. Cath, "Solute coupled diffusion in osmotically driven membrane processes", Environ. Sci. Technol., 43, 6769 (2009).   DOI
52 W. A. Phillip, J. S. Yong, and M. Elimelech, "Reverse draw solute permeation in forward osmosis: modeling and experiments", Environ. Sci. Technol., 44, 5170 (2010).   DOI
53 T. K. Ross and R. A. Francis, "The treatment of rusted steel with mimosa tannin", Corros. Sci., 18, 351 (1978).   DOI
54 F. Paiva-Martins and M. H. Gordon, "Interactions of ferric ions with olive oil phenolic compounds", J. Agric. Food Chem., 53, 2704 (2005).   DOI
55 P. Kraal, B. Jansen, K. G. J. Nierop, and J. M. Verstraten, "Copper complexation by tannic acid in aqueous solution", Chemosphere, 65, 2193 (2006).   DOI