A Study on an Effective Decellularization Technique for a Xenograft Cardiac Valve: the Effect of Osmotic Treatment with Hypotonic Solution

이종 심장 판막 이식편에서 효과적인 탈세포화 방법에 관한 연구; 저장성 용액(hypotonic solution)의 삼투압 처치법 효과

  • Sung, Si-Chan (Department of Thoracic and Cardiovascular Surgery, School of Medicine, Pusan National University) ;
  • Kim, Yong-Jin (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Choi, Sun-Young (Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center) ;
  • Park, Ji-Eun (Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center) ;
  • Kim, Kyung-Hwan (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Kim, Woong-Han (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine)
  • 성시찬 (부산대학교 의학전문대학원 흉부외과학교실) ;
  • 김용진 (서울대학교 의과대학 서울대학교병원 흉부외과학교실) ;
  • 최선영 (서울대병원 임상의학 연구소, 바이오 이종장기개발사업단) ;
  • 박지은 (서울대병원 임상의학 연구소, 바이오 이종장기개발사업단) ;
  • 김경환 (서울대학교 의과대학 서울대학교병원 흉부외과학교실) ;
  • 김웅한 (서울대학교 의과대학 서울대학교병원 흉부외과학교실)
  • Published : 2008.12.05

Abstract

Background: Cellular remnants in the bioprosthetic heart valve are known to be related to a host's immunologic response and they can form the nidus for calcification. The extracellular matrix of the decellularized valve tissue can also be used as a biological scaffold for cell attachment, endothelialization and tissue reconstitution. Thus, decellularization is the most important part in making a bioprosthetic valve and biological caffold. Many protocols and agents have been suggested for decellularization, yet there ave been few reports about the effect of a treatment with hypotonic solution prior to chemical or enzymatic treatment. This study investigated the effect of a treatment with hypotonic solution and the appropriate environments such as temperature, the treatment duration and the concentration of sodium dodecylsulfate (SDS) for achieving proper decellularization. Material and Method: Porcine aortic valves were decellularized with odium dodecylsulfate at various concentrations (0.25%, 0.5%), time durations (6, 12, 24 hours) and temperatures ($4^{\circ}C$, $20^{\circ}C$)(Group B). Same the number of porcine aortic valves (group A) was treated with hypotonic solution prior to SDS treatment at the same conditions. The duration of exposure to the hypotonic solution was 4, 7 and 14 hours and he temperature was $4^{\circ}C$ and $20^{\circ}C$, respectively. The degree of decellularization was analyzed by performing hematoxylin and eosin staining. Result: There were no differences in the degree of decellularization between the two concentrations (0.25% 0.5%) of SDS. Twenty four hours treatment with SDS revealed the best decellularization effect for both roups A and B at the temperature of $4^{\circ}C$, but there was no differences between the roups at $20^{\circ}C$. Treatment with hypotonic solution (group A) showed a better ecellularization effect at all the matched conditions. Fourteen hours treatment at $4^{\circ}C$ ith ypotonic solution prior to 80S treatment revealed the best decellularization effect. The treatment with hypotonic solution at $20^{\circ}C$ revealed a good decellularization effect, but his showed significant extracellular matrix destruction. Conclusion: The exposure of porcine heart valves to hypotonic solution prior to SDS treatment is highly effective for achieving decellularization. Osmotic treatment with hypotonic solution should be considered or achieving decellularization of porcine aortic valves. Further study should be carried out to see whether the treatment with hypotonic solution could reduce the exposure duration and concentration of chemical detergents, and also to evaluate how the structure of the extracellular matrix of the porcine valve is affected by the exposure to hypotonic solution.

배경: 조직판막에 남아있는 세포물질은 환자의 면역반응과 관련이 있고 석회화의 원인이 된다고 알려져 있으며 탈세포화 된 판막조직의 세포외 기질은 숙주세포(host cell)가 부착되고 내피화(endothelialization)되어 조직으로 재구성되게 하는 생물학적 지자체로도 사용될 수 있다. 그러므로 탈세포화는 조직판막의 면역반응 최소화와 지자체의 형성에 가장 중요한 부분이다. 탈세포화를 위해 많은 방법과 약제들이 개발 되어 왔다. 그러나 화학적 혹은 효소적 탈세포화 방법에 앞서 삼투압(osmolality)을 이용한 저장성 용액 처치에 대한 효과를 보여준 논문은 드물다. 본 연구는 탈세포화에 있어서 저장성 용액 처치의 효과를 밝히고 아울러 탈세포화 시 적절한 온도, 처치시간, sodium dodecylsulfate (SDS)의 농도를 밝히고자 시행되었다. 대상 및 방법: 돼지 판막을 여러 조건 즉 SDS농도(0.25%, 0.5%), 저장성용액 처치시간(6, 12, 24시간), 온도($4^{\circ}C$, $20^{\circ}C$)를 달리하여 일종의 이온세정 용매인 SDS를 이용하여 탈세포화를 하였다. 저장성 용액에 노출시키지 않은 군을 B군으로 하고 동 수의 돼지 판막을 같은 조건에서 SDS에 처치하기 전에 저장성용액에 노출 시켰다(A군). 저장성 용액에의 노출은 4, 7, 14시간, $4^{\circ}C$$20^{\circ}C$로 구분하여 각각 탈세포화의 정도를 조사하였다. 탈세포화와 세포외 기질의 보존 정도는 hematokylin-eosin (H-E) 염색으로 표본을 관찰하였다. 결과: SDS의 두 농도, 0.25%, 0.5%에서 탈세포화의 정도의 차이는 발견할 수 없었다. $4^{\circ}C$ 환경에서 24시간 SDS로 처치한 것이 A, B군 모두에서 가장 양호한 탈세포화를 소견을 보였고 $20^{\circ}C$에서는 탈세포화 정도에 차이가 없었다. 저장성 용액으로 처치한 A군 모두에서 같은 조건의 처치하지 않은 B군에 비래 더 양호한 탈세포화 소견을 보였다. $4^{\circ}C$, 14시간 저장성용액에 노출된 판막이 가장 좋은 탈세포화의 소견을 보였고, $20^{\circ}C$의 저장성 용액에 노출된 판막은 양호한 탈세포의 소견을 보였으나 심한 세포외 기질의 파괴를 관찰할 수 있었다. 결론: 판막조직의 탈세포화에 있어서 삼투압처리를 이용한 저장성 용액 처치는 매우 효과적인 방법으로서, 돼지 판막조직의 탈세포화에 꼭 적용되어야 할 방법으로 생각된다 저장성 용액에의 노출이 탈세포화에 필요한 화학적 세정제(chemical detergent)의 농도를 줄이고 이러한 세정제의 농도나 노출시간을 줄일 수 있는지 그리고 세포외 기질의 변화에 어느 정도 영향을 주는지에 대해 추가적인 연구가 필요할 것으로 생각된다.

Keywords

References

  1. Grauss RW, Hazekamp MG, van Vliet S, Gittenberger-de Groot AC, DeRuiter MC. Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J Thorac Cardiovasc Surg 2003;126: 2003-10 https://doi.org/10.1016/S0022-5223(03)00956-5
  2. Hirsch D, Drader J, Thomas TJ, et al. Inhibition of calcification of glutaraldehyde pretreated porcine aortic valve cusps with sodium dodecyl sulfate: preincubation and controlled released studies. J Biomed Mater Res 1993;27: 1477-84 https://doi.org/10.1002/jbm.820271203
  3. Schoen FJ, Levy RJ. Tissue heart valves: current challenges and future research perspectives. J Biomed Mater Res 199; 47:439-65 https://doi.org/10.1002/(SICI)1097-4636(19991215)47:4<439::AID-JBM1>3.0.CO;2-O
  4. Avakkol W, Gelehrter S, Goldberg CS, Bove EL, Devaney EJ, Ohye RG. Superior durability of synergraft pulmonary allografts compared with standard cryopreserved allografts. Ann Thorac Surg 2005;80:1610-4 https://doi.org/10.1016/j.athoracsur.2005.04.017
  5. Dohomen PM, Lembcke A, Holinski S, et al. Mid-term clinical results using a tissue-engineered pulmonary valve to reconstruct the right ventricular outflow tract during the Ross procedure. Ann Thorac Surg 2007;84:729-36 https://doi.org/10.1016/j.athoracsur.2007.04.072
  6. Dohmen PM, da Costa F, Holinski S, et al. Is there a possiblility for a glutaraldehyde-free porcine heart valve to grow?. Eur Surg Res 2006;38:54-61 https://doi.org/10.1159/000091597
  7. Erdbrugger W, Konertz W, Domen PM, et al. Decellularized xenogenic heart valves reveal remodeling and growth potential in vivo. Tissue Eng 2006;12:2059-68 https://doi.org/10.1089/ten.2006.12.2059
  8. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials 2006;27:3675-83
  9. Dahl SL, Koh J, Prabhakar V, Niklason LE. Decellularized native and engineered arterial scaffolds for transplantation. Cell transplant 2003;12:659-66 https://doi.org/10.3727/000000003108747136
  10. Hirsch D, Drader J, Thomas TJ, et al. Inhibition of calcification of glutaraldehyde pretreated porcine aortic valve cusps with sodium dodecyl sulfate: preincubation and controlled released studies. J Biomed Mater Res 1993;27: 1477-84 https://doi.org/10.1002/jbm.820271203
  11. Courtman DW, Pereira CA, Kashef V, et al. Development of a pericardial acellular matrix biomaterial-biochemical and mechnical effects of cell extraction. J Biomed Master Res 1994;28:655-66 https://doi.org/10.1002/jbm.820280602
  12. Kasimir MT, Rieder E, Seebacher G, et al. Comparison of different decellularization procedures of porcine heart valves. Int J Artif Orfgans 2003;26:421-7 https://doi.org/10.1177/039139880302600508
  13. Wilcox HE, Korossis SA, Booth A, et al. Biocompatibility and recellularization potential of an acellular porcine heart valve matrix. J Heart Valve Dis 2005;14:228-37
  14. Rieder E, Kasimir MT, Silberhumer G, et al. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg 2004;127:399-405 https://doi.org/10.1016/j.jtcvs.2003.06.017
  15. Gratzer PF, Harrison RD, Woods T. Matrix alteration and not residual sodium dodecyl sulfate cytotoxicity affects the cellular repopulation of a decellularization matrix. Tissue Engineering 2006;12:2975-83 https://doi.org/10.1089/ten.2006.12.2975
  16. Booth C, Korossis SA, Wilcox HE, et al. Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaffold. J Heart Valve Dis 2002;11:457-62