• Title/Summary/Keyword: osmotic sensitivity

Search Result 22, Processing Time 0.026 seconds

Pressure Retarded Osmosis Process: Current Status and Future (염도차를 이용한 압력지연삼투 공정의 현황과 미래)

  • Kim, Jihye;Kim, Seung-Hyun;Kim, Joon Ha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.791-802
    • /
    • 2014
  • Energy shortage is being exacerbated due to the increase of energy consumption and depletion of fossil fuels. In order to release the energy crisis, new types of energy resources such as small hydropower, solar power, wind power and biomass have been already developed or actively researched. Recently, osmotic power, which harvests energy from salinity gradient between seawater and fresh water, is considered as a feasible candidate. Among the osmotic power processes, pressure retarded osmosis (PRO) is widely gaining attention because of no emission of carbon dioxide and less sensitivity to the external environmental conditions. However, PRO process is facing difficulties such as the lack of specialized PRO membrane and optimization technologies. Therefore, PRO was reviewed in this paper in terms of theoretical background, membrane development, process development and fouling mechanism to provide insights and suggest the future direction of PRO research.

Characterization of Mutations in AlHK1 Gene from Alternaria longipes: Implication of Limited Function of Two-Component Histidine Kinase on Conferring Dicarboximide Resistance

  • Luo, Yiyong;Yang, Jinkui;Zhu, Mingliang;Yan, Jinping;Mo, Minghe;Zhang, Keqin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • Four series (S, M, R, and W) of Alternaria longipes isolates were obtained based on consecutive selection with Dimethachlon (Dim) and ultraviolet irradiation. These isolates were then characterized according to their tolerance to Dim, sensitivity to osmotic stress, and phenotypic properties. All the selected Dim-resistant isolates showed a higher osmosensitivity than the parental strains, and the last generation was more resistant than the first generation in the M, R, and W series. In addition, the changes in the Dim resistance and osmotic sensitivity were not found to be directly correlated, and no distinct morphologic characteristics were found among the resistant and sensitive isolates, with the exception of the resistant isolate K-11. Thus, to investigate the molecular basis of the fungicide resistance, a group III two-component histidine kinase (HK) gene, AlHK1, was cloned from nineteen A. longipes isolates. AlHK1p was found to be comprised of a six 92-amino-acid repeat domain (AARD), HK domain, and response regulator domain, similar to the Os-1p from Neurospora crassa. A comparison of the nucleotide sequences of the AlHK1 gene from the Dim-sensitive and -resistant isolates revealed that all the resistant isolates contained a single-point mutation in the AARD of AlHK1p, with the exception of isolate K-11, where the AlHK1p contained a deletion of 107 amino acids. Moreover, the AlHK1p mutations in the isolates of each respective series involved the same amino acid substitution at the same site, although the resistance levels differed significantly in each series. Therefore, these findings suggested that a mutation in the AARD of AlHK1p was not the sole factor responsible for A. longipes resistance to dicarboximide fungicides.

Fitness is Recovered with the Decline of Dimethachlon Resistance in Laboratory-induced Mutants of Sclerotinia sclerotiorum after Long-term Cold Storage

  • Li, Jin-Li;Wu, Feng-Ci;Zhu, Fu-Xing
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.305-309
    • /
    • 2015
  • After four years of cold storage, dimethachlon resistance of two laboratory-induced resistant Sclerotinia sclerotiorum isolates SCG7 and LA50 declined by 99.5% and 98.9%, respectively, and cross resistance to iprodione and procymidone also declined dramatically. Along with the decline of fungicide resistance, osmotic sensitivity to sodium chloride and glucose decreased tremendously; mycelial growth rate, sclerotia number and weight per potato dextrose agar (PDA) plate increased on average by 118.6%, 85. 5% and 64.5%, respectively; and virulence to detached leaves of oilseed rape increased by 72.7% on average. Significant negative correlations were detected between dimethachlon resistance levels and mycelial growth rate on PDA (r = -0.980, P = 0.021), and between resistance levels and lesion diameters on detached leaves of oilseed rape plants (r = -0.997, P = 0.002). These results have profound implications for assessing the potential risk for resistance development to dicarboximide fungicides in S. sclerotiorum.

Expression of Bacillus subtilis proBA Genes and Reduction of Feedback Inhibition of Proline Synthesis Increases Proline Production and Confers Osmotolerance in Transgenic Arabidopsis

  • Chen, Mingqing;Wei, Hongbo;Cao, JunWei;Liu, Ruijie;Wang, Youliang;Zheng, Congyi
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.396-403
    • /
    • 2007
  • Proline accumulation has been shown to correlate with tolerance to drought and salt stresses in plants. We attempt to introduce the wild-type, mutant, and fusion proBA genes derived from Bacillus subtilis into Arabidopsis thaliana under the control of a strong promoter cauliflower mosaic virus 35S (CaMV35S). The transgenic plants produced higher level of free proline than control and the overproduction of proline resulted in the increased tolerance to osmotic stress in transgenic plants. Besides, the mutation in proBA genes, which were proved to lead $\alpha$-glutamyl kinase ($\alpha$-GK) reduces sensitivity to the end-product inhibition and the fusion of proB and proA also result in increasing proline production and confer osmotolerance in transgenic lines.

Growth, Morphology, Cross Stress Resistance and Antibiotic Susceptibility of K. pneumoniae Under Simulated Microgravity

  • Kalpana, Duraisamy;Cha, Hyo-Jung;Park, Moon-Ki;Lee, Yang-Soo
    • Journal of Environmental Science International
    • /
    • v.21 no.3
    • /
    • pp.267-276
    • /
    • 2012
  • Spaceflights results in the reduction of immune status of human beings and increase in the virulence of microorganisms, especially gram negative bacteria. The growth of Klebsiella pneumoniae is enhanced by catecholamines and during spaceflight, elevation in the levels of cortisols occurs. So it is necessary to know the changes in physiology, virulence, antibiotic resistance and gene expression of K. pneumoniae under microgravity conditions. The present study was undertaken to study effect of simulated microgravity on growth, morphology, antibiotic resistance and cross stress resistance of K. pneumoniae to various stresses. The susceptibility of simulated microgravity grown K. pneumoniae to ampicillin, penicillin, streptomycin, kanamycin, hygromycin and rifampicin were evaluated. The growth of bacteria was found to be fast compared with normal gravity grown bacteria and no significant changes in the antibiotic resistance were found. The bacteria cultured under microgravity conferred cross stress resistance to acid, temperature and osmotic stress higher than the normal gravity cultured bacteria but the vice versa was found in case of oxidative stress.

Cryopreservation of in vitro Grown Shoot Tips of Two Freesia hybrida Cultivars by Droplet-vitrification

  • Jinjoo Bae;Jae-Young Song;Ji-Won Han;Ho Cheol Ko;Sung-Hee Nam;Jung-Ro Lee;Ho-sun Lee
    • Korean Journal of Plant Resources
    • /
    • v.36 no.6
    • /
    • pp.562-570
    • /
    • 2023
  • The droplet-vitrification technique for cryopreservation has proven successful across a diverse range of germplasm, ensuring safe and effective long term preservation. In this study, we investigate an effective cryopreservation protocol using the droplet-vitrification technique for shoot tips of Freesia hybrida cultivars 'Sunny Gold' and 'Sweet Lemon'. To determine optimal conditions for Freesia cryopreservation, we employed a carefully selected standard procedure along with additional treatments and alternative solutions. For 'Sunny Gold', the highest regrowth rate of 24% was achieved when shoot tips underwent dehydration with PVS3 solution for 120 minutes before direct immersion in liquid nitrogen (LN) for 1 hour, coupled with a standard protocol involving a two-step preculture with 0.3 M - 0.5 M sucrose, loading with C4 for 40 minutes, and unloading with 0.8 M sucrose for 40 minutes. In the case of 'Sweet Lemon,' regrowth of cryopreserved shoot tips was observed with dehydration treatments, including PVS2 (A3) for 60 minutes and PVS3 (B1) for 60 minutes, as well as longer exposure. The results reflect the distinct sensitivity of shoot tips to chemical toxicity and osmotic stress in these two genotypes. This study provides valuable evidence to consistently enhance the effectiveness of cryopreservation methods for the long-term conservation of Freesia germplasm.

Isolation of SYP61/OSMl that is Required for Salt Tolerance in Arabidopsis by T-DNA Tagging (애기장대에서 고염 스트레스 내성에 관여하는 OSM1/SYP61 유전자의 동정)

  • Kim, Ji-Yeon;Baek, Dong-Won;Lee, Hyo-Jung;Shin, Dong-Jin;Lee, Ji-Young;Choi, Won-Kyun;Kim, Dong-Giun;Chung, Woo-Sik;Kwak, Sang-Soo;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.11-18
    • /
    • 2006
  • Salt stress is one of major environmental factors influencing plant growth and development. To identify salt tolerance determinants in higher plants, a large-scale screen was conducted with a bialaphos marker-based T-DNA insertional collection of Arabidopsis ecotype C24 mutants. One line for salt stress-sensitive mutant (referred to as ssm1) exhibited increased sensitivity to both ionic (NaCl) and nonionic (mannitol) osmotic stress in a root growth assay. This result suggests that ssm1 mutant is involved in ion homeostasis and osmotic compensation in plant. Molecular cloning of the genomic DNA flanking T-DNA insert of ssm1 mutant was achieved by mutant genomic DNA library screening. T-DNA insertion appeared in the first exon of an open reading frame on F3M18.7, which is the same as AtSYP61. SSM1 is SYP61/OSM1 that is a member of the SNARE superfamily of proteins required for vesicular/target membrane fusions and factor related to abiotic stress.

Sensitivity Test of the Parameterization Methods of Cloud Droplet Activation Process in Model Simulation of Cloud Formation (구름방울 활성화 과정 모수화 방법에 따른 구름 형성의 민감도 실험)

  • Kim, Ah-Hyun;Yum, Seong Soo;Chang, Dong Yeong
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.211-222
    • /
    • 2018
  • Cloud droplet activation process is well described by $K{\ddot{o}}hler$ theory and several parameterizations based on $K{\ddot{o}}hler$ theory are used in a wide range of models to represent this process. Here, we test the two different method of calculating the solute effect in the $K{\ddot{o}}hler$ equation, i.e., osmotic coefficient method (OSM) and ${\kappa}-K{\ddot{o}}hler$ method (KK). To do that, each method is implemented in the cloud droplet activation parameterization module of WRF-CHEM (Weather Research and Forecasting model coupled with Chemistry) model. It is assumed that aerosols are composed of five major components (i.e., sulfate, organic matter, black carbon, mineral dust, and sea salt). Both methods calculate similar representative hygroscopicity parameter values of 0.2~0.3 over the land, and 0.6~0.7 over the ocean, which are close to estimated values in previous studies. Simulated precipitation, and meteorological variables (i.e., specific heat and temperature) show good agreement with reanalysis. Spatial patterns of precipitation and liquid water path from model results and satellite data show similarity in general, but on regional scale spatial patterns and intensity show some discrepancy. However, meteorological variables, precipitation, and liquid water path do not show significant differences between OSM and KK simulations. So we suggest that the relatively simple KK method can be a good alternative to the OSM method that requires various information of density, molecular weight and dissociation number of each individual species in calculating the solute effect.

Carbamoyl Phosphate Synthase Subunit CgCPS1 Is Necessary for Virulence and to Regulate Stress Tolerance in Colletotrichum gloeosporioides

  • Mushtaq, Aamar;Tariq, Muhammad;Ahmed, Maqsood;Zhou, Zongshan;Ali, Imran;Mahmood, Raja Tahir
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.232-242
    • /
    • 2021
  • Glomerella leaf spot (GLS) is a severe infectious disease of apple whose infective area is growing gradually and thus poses a huge economic threat to the world. Different species of Colletotrichum including Colletotrichum gloeosporioides are responsible for GLS. For efficient GLS control, it is important to understand the mechanism by which the cruciferous crops and C. gloeosporioides interact. Arginine is among one of the several types of amino acids, which plays crucial role in biochemical and physiological functions of fungi. The arginine biosynthesis pathway involved in virulence among plant pathogenic fungi is poorly understood. In this study, CgCPS1 gene encoding carbamoyl phosphate synthase involved in arginine biosynthesis has been identified and inactivated experimentally. To assess the effects of CgCPS1, we knocked out CgCPS1 in C. gloeosporioides and evaluated its effects on virulence and stress tolerance. The results showed that deletion of CgCPS1 resulted in loss of pathogenicity. The ∆cgcps1 mutants showed slow growth rate, defects in appressorium formation and failed to develop lesions on apple leaves and fruits leading to loss of virulence while complementation strain (CgCPS1-C) fully restored its pathogenicity. Furthermore, mutant strains showed extreme sensitivity to high osmotic stress displaying that CgCPS1 plays a vital role in stress response. These findings suggest that CgCPS1 is major factor that mediates pathogenicity in C. gloeosporioides by encoding carbamoyl phosphate that is involved in arginine biosynthesis and conferring virulence in C. gloeosporioides.

Stress Tolerance and Virulence-Related Roles of Lipopolysaccharide in Burkholderia glumae

  • Lee, Chaeyeong;Mannaa, Mohamed;Kim, Namgyu;Kim, Juyun;Choi, Yeounju;Kim, Soo Hyun;Jung, Boknam;Lee, Hyun-Hee;Lee, Jungkwan;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.445-458
    • /
    • 2019
  • The lipopolysaccharide (LPS) composed of lipid A, core, and O-antigen is the fundamental constituent of the outer membrane in gram-negative bacteria. This study was conducted to investigate the roles of LPS in Burkholderia glumae, the phytopathogen causing bacterial panicle blight and seedling rot in rice. To study the roles of the core oligosaccharide (OS) and the O-antigen region, mutant strains targeting the waaC and the wbiFGHI genes were generated. The LPS profile was greatly affected by disruption of the waaC gene and slight reductions were observed in the O-antigen region following wbiFGHI deletions. The results indicated that disruption in the core OS biosynthesis-related gene, waaC, was associated with increased sensitivity to environmental stress conditions including acidic, osmotic, saline, and detergent stress, and to polymyxin B. Moreover, significant impairment in the swimming and swarming motility and attenuation of bacterial virulence to rice were also observed in the waaC-defective mutant. The motility and virulence of O-antigen mutants defective in any gene of the wbiFGHI operon, were not significantly different from the wild-type except in slight decrease in swimming and swarming motility with wbiH deletion. Altogether, the results of present study indicated that the LPS, particularly the core OS region, is required for tolerance to environmental stress and full virulence in B. glumae. To our knowledge, this is the first functional study of LPS in a plant pathogenic Burkholderia sp. and presents a step forward toward full understanding of B. glumae pathogenesis.