DOI QR코드

DOI QR Code

Fitness is Recovered with the Decline of Dimethachlon Resistance in Laboratory-induced Mutants of Sclerotinia sclerotiorum after Long-term Cold Storage

  • Li, Jin-Li (College of Plant Science and Technology, Huazhong Agricultural University) ;
  • Wu, Feng-Ci (Agro-Biotechnology Institute of Jilin Academy of Agricultural Sciences) ;
  • Zhu, Fu-Xing (College of Plant Science and Technology, Huazhong Agricultural University)
  • Received : 2015.04.27
  • Accepted : 2015.07.05
  • Published : 2015.09.01

Abstract

After four years of cold storage, dimethachlon resistance of two laboratory-induced resistant Sclerotinia sclerotiorum isolates SCG7 and LA50 declined by 99.5% and 98.9%, respectively, and cross resistance to iprodione and procymidone also declined dramatically. Along with the decline of fungicide resistance, osmotic sensitivity to sodium chloride and glucose decreased tremendously; mycelial growth rate, sclerotia number and weight per potato dextrose agar (PDA) plate increased on average by 118.6%, 85. 5% and 64.5%, respectively; and virulence to detached leaves of oilseed rape increased by 72.7% on average. Significant negative correlations were detected between dimethachlon resistance levels and mycelial growth rate on PDA (r = -0.980, P = 0.021), and between resistance levels and lesion diameters on detached leaves of oilseed rape plants (r = -0.997, P = 0.002). These results have profound implications for assessing the potential risk for resistance development to dicarboximide fungicides in S. sclerotiorum.

Keywords

References

  1. Bardas, G. A., Myresiotis, C. K. and Karaogllanidis, G. S. 2008. Stability and fitness of anilinopyrimidine-resistant strains of Botrytis cinerea. Phytopathology 98:443-450. https://doi.org/10.1094/PHYTO-98-4-0443
  2. Boland, G. J. and Hall, R. 1994. Index of plant hosts of Sclerotinia sclerotiorum. Can. J. Plant Pathol. 16:93-108. https://doi.org/10.1080/07060669409500766
  3. Bolton, M. D., Thomma, B. P. and Nelson, B. D. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol. Plant Pathol. 7:1-16. https://doi.org/10.1111/j.1364-3703.2005.00316.x
  4. Cox, K. D., Bryson, P. K. and Schnabel, G. 2007. Instability of propiconazole resistance and fitness in Monilinia fructicola. Phytopathology 97:448-453. https://doi.org/10.1094/PHYTO-97-4-0448
  5. Duan, Y. B., Ge, C. Y., Liu, S. M., Wang, J. X. and Zhou, M. G. 2013. A two-component histidine kinase Shk1 controls stress response, sclerotial formation and fungicide resistance in Sclerotinia sclerotiorum. Mol. Plant Pathol. 14:708-718. https://doi.org/10.1111/mpp.12041
  6. Duan, Y. B., Ge, C. Y. and Zhou, M. G. 2014. Molecular and biochemical characterization of Sclerotinia sclerotiorum laboratory mutants resistant to dicarboximide and phenylpyrrole fungicides. J. Pest Sci. 87:221-230. https://doi.org/10.1007/s10340-013-0526-6
  7. Faretra, F. and Pollastro, S. 1993. Genetics of sexual compatibility and resistance to benzimidazole and dicarboximide fungicides in isolates of Botryotinia fuckliana (Botrytis cinerea) from nine countries. Plant Pathol. 42:48-57. https://doi.org/10.1111/j.1365-3059.1993.tb02933.x
  8. Karaoglanidis, G. S. and Thanassoulopoulos, C. C. 2002. Phenotypic instability of Cercospora beticola sacc. strains expressing resistance to the sterol demethylation-inhibiting (DMI) fungicide flutriafol after cold exposure. J. Phytopathol. 150:692-696. https://doi.org/10.1046/j.1439-0434.2002.00825.x
  9. Kim, Y. K. and Xiao, C. L. 2011. Stability and fitness of pyraclostrobin- and boscalid-resistant phenotypes in field isolates of Botrytis cinerea from apple. Phytopathology 101:1385-1391. https://doi.org/10.1094/PHYTO-04-11-0123
  10. Li, H. X., Lu, Y. J., Zhou, M. G. and Wang, X. F. 2003. Mutation in $\beta$-tubulin of Sclerotinia sclerotiorum conferring resistance to carbendazim in rapeseed field isolates. Chin. J. Oil Crop Sci. 25:56-60.
  11. Liang, H. J., Li, J. L., Di, Y. L., Zhang, A. S. and Zhu, F. X. 2015. Logarithmic transformation is essential for statistical analysis of fungicide EC50 values. J. Phytopathol. 163:456-464. https://doi.org/10.1111/jph.12342
  12. Lu, G. 2003. Engineering Sclerotinia sclerotiorum resistance in oilseed crops. African J. Biotech. 2:509-516. https://doi.org/10.5897/AJB2003.000-1101
  13. Ma, H. X., Feng, X. J., Chen, Y., Chen, C. J. and Zhou, M. G. 2009. Occurrence and characterization of dimethachlon insensitivity in Sclerotinia sclerotiorum in Jiangsu Province of China. Plant Dis. 93:36-42. https://doi.org/10.1094/PDIS-93-1-0036
  14. Reimann, S. and Deising, H. B. 2005. Inhibition of efflux transporter-mediated fungicide resistance in Pyrenophora tritici-repentis by a derivative of 4′-hydroxyflavone and enhancement of fungicide activity. Appl. Environ. Microbiol. 71:3269-3275. https://doi.org/10.1128/AEM.71.6.3269-3275.2005
  15. Wang, Y., Hou, Y. P., Chen, C. J. and Zhou, M. G. 2014. Detection of resistance in Sclerotinia sclerotiorum to carbendazim and dimethachlon in Jiangsu Province of China. Australas. Plant Pathol. 43:307-312. https://doi.org/10.1007/s13313-014-0271-1
  16. Yin, Y. N., Liu, X., Shi, Z. Q. and Ma, Z. H. 2010. A multiplex allele-specific PCR method for the detection of carbendazimresistant Sclerotinia sclerotiorum. Pestic. Biochem. Physiol. 97:36-42. https://doi.org/10.1016/j.pestbp.2009.12.002
  17. Yourman, L. F., Jeffers, S. N. and Dean, R. A. 2001. Phenotype instability in Botrytis cinerea in the absence of benzimidazole and dicarboximide fungicides. Phytopathology 91:307-315. https://doi.org/10.1094/PHYTO.2001.91.3.307
  18. Zhou, F., Zhang, X. L., Li, J. L. and Zhu, F. X. 2014a. Dimethachlon resistance in Sclerotinia sclerotiorum in China. Plant Dis. 98:1221-1226. https://doi.org/10.1094/PDIS-10-13-1072-RE
  19. Zhou, F., Zhu, F. X., Zhang, X. L. and Zhang, A. S. 2014b. First report of dimethachlon resistance in field isolates of Sclerotinia sclerotiorum on oilseed rape in Shaanxi Province of northwestern China. Plant Dis. 98:568.
  20. Zhu, F. X., Bryson, P. K. and Schnabel, G. 2012. Influence of storage approaches on instability of propiconazole resistance in Monilinia fructicola. Pest Manag. Sci. 68:1003-1009. https://doi.org/10.1002/ps.3255