• Title/Summary/Keyword: oscillatory

Search Result 714, Processing Time 0.022 seconds

Large amplitude oscillatory shear behavior of the network model for associating polymeric systems

  • Ahn, Kyung-Hyun;Kim, Seung-Ha;Sim, Hoon-Goo;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.2
    • /
    • pp.49-55
    • /
    • 2002
  • To understand the large amplitude oscillatory shear (LAOS) behavior of complex fluids, we have investigated the flow behavior of a network model in the LAOS environment. We applied the LAOS flow to the model proposed by Vaccaro and Marrucci (2000), which was originally developed to describe the system of associating telechelic polymers. The model was found to predict at least three different types of LAOS behavior; strain thinning (G' and G" decreasing), strong strain overshoot (G' and G" increasing followed by decreasing), and weak strain overshoot (G' decreasing, G" increasing followed by decreasing). The overshoot behavior in the strain sweep test, which il often observed in some complex fluid systems with little explanation, could be explained in terms of the model parameters, or in terms of the overall balance between the creation and loss rates of the network junctions, which are continually created and destroyed due to thermal and flow energy. This model does not predict strain hardening behavior because of the finitely extensible nonlinear elastic (FENE) type nonlinear effect of loss rate. However, the model predicts the LAOS behavior of most of the complex fluids observed in the experiments.he experiments.

Using oscillatory shear to probe the effects of bidispersity in inverse ferrofluids

  • Ekwebelam, C.C.;See, H.
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.1
    • /
    • pp.35-42
    • /
    • 2007
  • The effects of particle size distribution on the magnetorheological response of inverse ferrofluids was investigated using controlled mixtures of two monodisperse non-magnetisable powders of sizes $4.6\;{\mu}m\;and\;80{\mu}m$ at constant volume fraction of 30%, subjected to large amplitude oscillatory shear flow. In the linear viscoelastic regime (pre-yield region), it was found that the storage and loss moduli were dependent on the particle size as well as the proportion of small particles, with the highest storage modulus occurring for the monodisperse small particles. In the nonlinear regime (post yield region), Fourier analysis was used to compare the behaviour of the $1^{st}\;and\;3^{rd}$ harmonics ($I_{1}\;and\;I_{3}\;respectively$) as well as the fundamental phase angle as functions of the applied strain amplitude. The ratio of $I_{3}/I_{1}$ was found to become more pronounced with decreasing particle size as well as with increasing proportion of small particles in the bidisperse mixtures. Furthermore, the phase angle was able to clearly show the transition from solid-like to viscous behaviour. The results suggested that the nonlinear response of a bidisperse IFF is dependent on particle size as well as the proportion of small particles in the system.

Optimum Design Methodology of the Damped Oscillatory Impulse Current Generator Considering a Nonlinear Load (비선형 부하를 고려한 감쇠 진동형 임펄스 전류발생기의 설계 기법)

  • Chang, Sug-Hun;Lee, Jae-Bok;Shenderey, S.V.;Myung, Sung-Ho;Cho, Yuen-Gue
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2255-2262
    • /
    • 2008
  • This paper presents a design parameter calculation methodology and its realization to construction for the damped oscillatory impulse current generator(ICG) modelled as damping factor $\alpha$. Matlab internal functions, "fzero" and "polyfit" are applied to find a which are solutions of second order nonlinear equation related with three wave parameters $T_{1},T_{2}$ and $I_{os}$. The calculation results for standard impulse current waveforms such as 4/10${\mu}s$, 8/20${\mu}s$ and 30/80${\mu}s$ show very good accuracy and this results make it possible to extend to generalization in the design of damped oscillatory lCG with any capacitor. 8/20${\mu}s$ ICG based on the calculated design circuit parameters is fabricated in consideration of the nonlinear load(MOV) variation. Comparisons of the tested waveforms with the designed estimation show error within 10% for the waveform tolerance recommended in IEC 60060-1 and IEEE std. C62.45.

Effective Installations Technique of Grounding Conductors for Metal Oxide Surge Arrestors (배전피뢰기용 접지도선의 효과적인 설치기법)

  • Lee, Bok-Hui;Gang, Seong-Man;Yu, In-Seon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.6
    • /
    • pp.253-259
    • /
    • 2002
  • This paper deals with the effects of grounding conductors for metal oxide surge arresters. When surge arresters are improperly installed, the results can cause costly damage of electrical equipments. In particular, the route of surge arrester connection is very important because bends and links of leads increase the impedances to lightning surges and tend to nullify the effectiveness of a grounding conductor. Therefore, there is a need to know how effective installation of lightning surge arresters is made in order to control voltage and to absorb energy at high lightning currents. The effectiveness of a grounding conductor and 18 [㎸] metal oxide distribution line arresters was experimentally investigated under the lightning and oscillatory impulse voltages. Thus, the results are as follows; (1) The induced voltage of a grounding conductor is drastically not affected by length of a connecting line, but it is very sensitive to types of grounding conductor. (2) The coaxial cable having a low characteristic impedance is suitable as a grounding conductor. (3) It is also clear from these results that bonding the metal raceway enclosing the grounding conductor to the grounding electrode is very effective because of skin effect. (4) The induced voltages of grounding conductors for the oscillatory impulse voltages are approximately twice as large as those for the lightning impulse voltages.

Numerical simulation of a toroidal single-phase natural circulation loop with a k-kL-ω transitional turbulence model

  • Yiwa Geng;Xiongbin Liu;Xiaotian Li;Yajun Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.233-240
    • /
    • 2024
  • The wall friction correlations of oscillatory natural circulation loops are highly loop-specific, making it difficult to perform 1-D system simulations before obtaining specific experimental data. To better predict the friction characteristics, the nonlinear dynamics of a toroidal single-phase natural circulation loop were numerically investigated, and the transition effect was considered. The k-kL-ω transitional turbulence and k-ω SST turbulence models were used to compute the flow characteristics of the loop under different heating powers varying from 0.48 to 1.0 W/cm2, and the results of both models were compared with previous experiments. The mass flow rates and friction factors predicted by the k-kL-ω model showed a better agreement with the experimental data than the results of the k-ω SST model. The oscillation frequencies calculated using both models agreed well with the experimental data. The k-kL-ω transitional turbulence model provided better friction-factor predictions in oscillatory natural circulation loops because it can reproduce the temporal and spatial variation of the wall shear stress more accurately by capturing the movement of laminar, transition turbulent zones inside unstable natural circulation loops. This study shows that transition effects are a possible explanation for the highly loop-specific friction correlations observed in various oscillatory natural circulation loops.

The Analysis of 40Hz Event-Related Potentials in Schizophrenia (정신분열병 환자에서 40Hz 뇌 사건관련전위에 관한 연구 : 분석 방법론적 측면)

  • Youn, Tak;Park, Hae-Jeong;Kang, Do-Hyung;Kim, Myung-Sun;Kim, Jae-Jin;Kwon, Jun Soo
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.2
    • /
    • pp.251-257
    • /
    • 2001
  • Backgrounds : Gamma band oscillatory activity is considered to be related to cognitive functions and illustrates that the concept of event-related oscillations bridges the gap between single neurons and neural assemblies. An event-related gamma oscillation is the time-locked responses of specific frequency, and can be identified by computing the amplitude frequency characteristics of the averaged event-related potentials(ERPs) after stimulation. Objectives : We purposed to present experimental paradigm to investigate ${\gamma}$-band oscillation activities from the recording of ERPs by using auditory oddball paradigm and investigate the difference of ${\gamma}$-band activity between schizophrenia and normal controls. Methods : The ERPs resulting from auditory stimuli with oddball paradigm in a group of schizophrenics(n=11), and also a group of age-, sex-, and handedness matched normal controls, were recorded by 128 channel EEG. The ${\gamma}$-band oscillatory activities were calculated by using time-frequency wavelet decomposition of the signal between 20 and 80Hz. The ${\gamma}$-band oscillatory activities of both groups were compared by t-test. Results : The ${\gamma}$-band oscillatory of the leads Fz, Cz, and Pz of both groups were represented well in the time-frequency maps. Significant increases of the ${\gamma}$-band activity in normal controls compared with schizophrenics were observed around 160 msec, 350 msec, and 800 msec after stimulation. Conclusions : Our results suggested that the increment in ${\gamma}$-band oscillatory activity during cognitive operations and decreased ${\gamma}$-band activity in schizophrenics may be associated with the cognitive dysfunctions and the pathophysiology of the schizophrenia.

  • PDF