J. Korean Math. Soc. Vol. 19, No. 2, 1983

OSCILLATORY PROPERTIES FOR NONLINEAR SECOND ORDER DIFFERENTIAL EQUATIONS WITH DAMPED TERM

By Hiroshi Onose

1. Introduction

Consider the following nonlinear second order differential equation with damped term

(1)
$$y''(t) + p(t)y'(t) + q(t)f(y(t)) = 0$$

and

where $p, q \in C[t_0, \infty)$, $f \in C(R)$, yf(y) > 0 for $y \neq 0$, $g'(t) \geq 0$ for $t \geq t_0$ and $\lim_{t \to \infty} g(t) = \infty$. We define $r(t) \equiv \exp(\int_{t_0}^t p(s)ds)$. We restrict our attention to solutions y(t) of (1) which exist on some half-line $[t_0, \infty)$ and are nontrivial for all large t. A solution y(t) of (1) is called oscillatory if y(t) has zeros for arbitrarily large t, otherwise, a solution is said to be nonoscillatory. Equation (1) is oscillatory if all solutions of (1) are oscillatory. Recently, Yeh [8] proved some oscillatory results for equation (1) by using Kamenev's [4] method. Many author's have studied equation (1) (see [1, 3, 5-7]). In this paper, we propose another simple but useful oscillation criterion for equations (1) and (2). Especially, our results can be applied to all examples of Yeh [8], and also to the Emden-Fouler equation and the Fermi-Thomas equation.

2. Oscillation theorems

THEOREM 1. Let
$$f'(y)$$
 exist and $f'(y) > 0$ for $y \in \mathbb{R}' \equiv \mathbb{R} - \{0\}$. If
$$\int_{t_0}^{\infty} r(t) q(t) dt = \infty \text{ and } \int_{t_0}^{\infty} \frac{dt}{r(t)} = \infty,$$

then equation (1) is oscillatory.

Proof. Suppose that y(t) is a nonoscillatory solution of (1). Without loss of generality, we may assume that y(t)>0 for $t \ge t_1 \ge t_0$, since a parallel argument holds when y(t)<0. Multiplying (1) by r(t)/f(y(t)) and integrated

Received August 16, 1982.

ating from t_1 to t, we obtain

(4)
$$\int_{t_1}^t \frac{r(s)y''(s)}{f(y(s))} ds + \int_{t_1}^t \frac{r(s)p(s)y'(s)}{f(y(s))} ds + \int_{t_1}^t r(s)q(s) ds = 0.$$

By using r'(t) = r(t)p(t) and (4), we have

(5)
$$\frac{y'(t)r(t)}{f(y(t))} - C + \int_{t_1}^t \frac{r(s)f'(y(s))(y'(s))^2}{(f(y(s)))^2} ds + \int_{t_1}^t r(s)q(s) ds = 0,$$

whence we obtain

(6)
$$\frac{y'(t)r(t)}{f(y(t))} \leq C - \int_{t_1}^t r(s) q(s) ds,$$

where C is a constant.

By (3) and (6), we can obtain

$$(7) y'(t) < 0 for t \ge t_2 \ge t_1.$$

From (5) with using (3) and (7), it follows that there is
$$t_3 \ge t_2$$
 such that (8)
$$3 + \int_{t_3}^t \frac{r(s)f'(y(s))(y'(s))^2}{(f(y(s)))^2} ds \le \frac{r(t)[-y'(t)]}{f(y(t))}.$$

Multiplying (8) by

$$\frac{f'(y(t))[-y'(t)]}{f(y(t))} \{3 + \int_{t_3}^t \frac{r(s)f'(y(s))(y'(s))^2}{(f(y(s)))^2} ds \}^{-1} \ge 0$$

and integrating from t_3 to t, we have

(9)
$$\log \frac{f(y(t_3))}{f(y(t))} \leq \log \left\{3 + \int_{t_3}^t \frac{r(s)f'(y(s))(y'(s))^2}{(f(y(s)))^2} ds\right\}.$$

By (8) and (9), we obtain

(10)
$$f(y(t_3)) \leq r(t) [-y'(t)] for t \geq t_3.$$

Dividing (10) through by r(t) and integrating from t_3 to t, we have

$$y(t) \leq y(t_3) - f(y(t_3)) \int_{t_3}^{t} \frac{1}{r(s)} ds, \quad t \geq t_3,$$

which, because it is supposed that y(t) > 0 for $t \ge t_1$, contradicts (3).

Q. E. D.

REMARK. Theorem 1 corresponds to Theorem 1 of Yeh [8] and applies to all Examples of Yeh [8].

EXAMPLE 1[8]. Consider the equation

(11)
$$y''(t) + \frac{1}{t}y'(t) + \frac{1}{t^2}y(t) = 0, \quad t \ge 1.$$

Since $r(t) = \exp(\int_{1}^{t} \frac{1}{s} ds) = \exp(\log t) = t$, all conditions of Theorem 1 are satisfied. Hence, equation (11) is oscillatory.

EXAMPLE 2[8]. Consider the equation

Oscillatory properties for nonlinear second order differential equations with damped term 107

(12)
$$y''(t) + \frac{1}{2t}y'(t) + \frac{1}{4t}y(t) = 0, \quad t \ge 1.$$

Since $r(t) = \sqrt{t}$, all conditions of Theorem 1 are satisfied. Hence, equation (12) is oscillatory.

EXAMPLE 3. Consider the equation

(13)
$$y''(t) + (\sin t)y'(t) + (1-\cos t)y(t) = 0, \quad t \ge \frac{\pi}{2}.$$

Since $r(t) = \exp(\int_{\pi/2}^{t} \sin s \, ds) = \exp(-\cos t)$, all conditions of Theorem 1 are satisfied. Hence, equation (13) is oscillatory. In fact, $y(t) = \sin t$ is a solution of (13).

REMARK. Theorem 1 is easier to apply to Example 3 rather than Theorems 1 and 2 of Yeh [8].

THEOREM 2. Let $q(t) \ge 0$ and $f(y)/y \ge k > 0$ for $y \ne 0$. If (3) holds, then equation (1) is oscillatory.

Proof. Assume that y(t) is a nonoscillatory solution of (1). Multiplying (1) by r(t)/y(t) and integrating from t_1 to t, where t_1 is so chosen that y(t) > 0 for $t > t_1$, we obtain

(14)
$$\int_{t_1}^{t} \frac{r(s)y''(s)}{y(s)} ds + \int_{t_1}^{t} \frac{r(s)p(s)y'(s)}{y(s)} ds + \int_{t_1}^{t} kr(s)q(s) ds \leq 0.$$

By (14) with using r'(t) = r(s) p(s), we have

(15)
$$\frac{y'(t)r(t)}{y(t)} - C + \int_{t_1}^t \frac{r(s)(y'(s))^2}{(y(s))^2} ds + k \int_{t_1}^t r(s) q(s) ds \le 0,$$

where C is a constant.

By (3) and (15), we obtain

$$(16) y'(t) < 0 for t \ge t_2 \ge t_1.$$

From (15) with using (3) and (16), it follows that there is a $t_3 \ge t_2$ such that

(17)
$$3 + \int_{t_3}^{t} \frac{r(s) (y'(s))^2}{(y(s))^2} ds \leq \frac{r(t) [-y'(t)]}{y(t)}.$$

Multiplying (17) by

$$\frac{[-y'(t)]}{y(t)} \left\{3 + \int_{t_3}^t \frac{r(s)(y'(s))^2}{(y(s))^2} ds\right\}^{-1}$$

and integrating from t_3 to t, we have

(18)
$$\log \frac{y(t_3)}{y(t)} \le \log \left\{ 3 + \int_{t_3}^t \frac{r(s) (y'(s))^2}{(y(s))^2} ds \right\}.$$

By (17) and (18), we obtain

$$y(t_3) \leq r(t) [-y'(t)], \quad t \geq t_3.$$

The rest of the proof proceeds as Theorem 1. Q. E. D.

REMARK. Theorem 2 corresponds to Theorem 2 of Yeh [8] and applies to Examples 1-3.

3. The case with deviating argument

THEOREM 3. Let f'(y) exist, f'(y) > 0 for $y \in \mathbb{R}' = \mathbb{R} - \{0\}$ and $q(t) \ge 0$. If (3) holds, then equation (2) is oscillatory.

Proof. Suppose that y(t) is a nonoscillatory solution of (2). Without loss of generality, we may assume that y(t) > 0 for $t \ge t_1 \ge t_0$, since a parallel argument holds when y(t) < 0. Multiplying (2) by r(t)/f(y(g(t))) and integrating from t_2 to t, where t_2 being so large that $g(t) \ge t_1$, we obtain

(19)
$$\int_{t_2}^{t} \frac{r(s)y''(s)}{f(y(g(s)))} ds + \int_{t_2}^{t} \frac{r(s)p(s)y'(s)}{f(y(g(s)))} ds + \int_{t_2}^{t} r(s)q(s) ds = 0.$$

By (19), f'(y) > 0 and $g'(t) \ge 0$, we have

(20)
$$\frac{y'(t)r(t)}{f(y(g(t)))} \leq C - \int_{t_2}^t r(s) q(s) \, \mathrm{d}s,$$

where C is a constant.

From (3) and (20), we obtain

$$(21) y'(t) < 0 for t \ge t_3 \ge t_2.$$

On the other hand, from (2), we may write

(22)
$$r(t)y''(t) + r(t)p(t)y'(t) + r(t)q(t)f(y(g(t))) = 0.$$

By integrating (22) from $t_4(>t_3)$ to t, we have

$$r(t)y'(t) \leq r(t_4)y'(t_4).$$

By dividing this and integrating t_4 to t, we obtain

$$y(t) - y(t_4) \leq r(t_4) y'(t_4) \int_{t_4}^t \frac{ds}{r(s)},$$

which, (21) and (3) lead a contradiction as $t \rightarrow \infty$. Q. E. D.

EXAMPLE 4. Consider the equation

(23)
$$y''(t) + (\sin t)y'(t) + (1-\cos t)y(t+2\pi) = 0, \quad t \ge \frac{\pi}{2}.$$

Equation (23) is oscillatory by Theorem 3. In fact, $y(t) = \sin t$ is an oscillatory solution of (23).

4. Application to the Emden-Fouler equation

The Emden-Fouler equation [2, 7] encountered in astrophysics and Fermi-Thomas equation in atomic physics take the following form

$$(24) (tpy'(t))'+tλy(t)7=0, t \ge 1,$$

where p, λ, γ positive constants, γ the ratio of odd integers. Equation (24)

is written in the form

(25)
$$y''(t) + \frac{p}{t}y'(t) + t^{\lambda-p}y(t)^{\tau} = 0.$$

Bobisud [2] proved that equation (25) was oscillatory provided $\gamma \le 1$ and $\lambda \ge p-1$. Wong [7] studied equation (25) for p>1. Here, we can show that Theorem 1 covers the other case, for example, $\gamma=1$, p=1 and $\lambda=-(1/2)$. Consider the equation (25) for $\gamma=1$, p=1 and $\lambda=-(1/2)$. Since $r(t)=\exp(\int_{-1}^{t} \frac{1}{s} ds)=t$, all conditions of Theorem 1 are satisfied. Hence, equation (25) is oscillatory, and also equation (24) is oscillatory.

References

- 1. J. Baker, Oscillation theorems for a second order damped nonlinear differential equation SIAM J. Appl. Math. 25 (1973), 37-40.
- L. E. Bobisud, Oscillation of solutions of damped nonlinear equations, SIAM J. Appl. Math. 19 (1970), 601-616.
- 3. G. J. Butler, The oscillatory behavior of a second order nonlinear differential equations with damping, J. Math. Anal. Appl. 57 (1977), 273-289.
- 4. I.V. Kamenev, Integral criterion for oscillation of linear differential equation of second order, Mat. Zametki 23 (1978), 249-251.
- 5. A.G. Kartsatos and H. Onose, On the maintenance of oscillations under the effect of a small nonlinear damping, Bull. Fac. Sci. Ibaraki Univ. Sec. A. Math. 4 (1972), 3-11.
- 6. M. Naito, Oscillation criteria for a second order differential equation with a damping term, Hiroshima Math. J. 4 (1974), 285-291.
- J.S.W. Wong, On second order nonlinear oscillation, Funkcial. Ekvac. 11 (1969), 207-234.
- 8. C.C. Yeh, Oscillation theorems for nonlinear second order differential equations with damped term, Proc. Amer. Math. Soc. 84 (1982), 397-402.

Department of Mathematics Ibaraki University Mito, 310 Japan