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OSCILLATORY PROPERTIES FOR NONLINEAR SECOND ORDER
DIFFERENTIAL EQUATIONS WITH DAMPED TERM

By HIROSHl ONOSE

1. Introduction

Consider the following nonlinear second order differential equation with
damped term

(1) y"(t) +p(t)y'(t) +q(t)f(y(t» =0
and

(2) y"(t) +p(t)y'(t) +q(t)f(y(g(t») =0,
where p, qEC[to, 00), fEC(R), yf(y»O for y=tO, g'(t) ~O for t~to and

lim get) =00. We define r(t)=exp(f
t

p(s)ds). We restrict our attention to
t_ oo to
solutions yet) of (1) which exist on some half-line [to. 00) and are non­
trivial for all large t. A solution yet) of (1) is called oscillatory if yet) has
zeros for arbitrarily large t, otherwise, a solution is said to be nonoscill­
atory. Equation (1) is oscillatory if all solutions of (1) are oscillatory.
Recently, Yeh [8J proved some oscillatory results for equation (1) by using
Kamenev's [4J method. Many author's have studied equation (1) (see [1,
3,5-7J). In this paper, we propose another simple but useful oscillation
criterion for equations (1) and (2). Especially, our results can be applied
to all examples of Yeh [8J, and also to the Emden-Fouler equation and
the Fermi-Thomas equation.

2. Oscillation theorems

THEOREM 1. Let f'(y) exist and f'(y»O for yER'-R- {O}. If

SO' f"" dtr(t)q(t)dt=oo and -()=00,
to to r t

then equation (1) is oscillatory.

Proof. Suppose that yet) is a nonoscillatory solution of (1). Without
loss of generality, we may assume that y(t»O for t~tl~to, since a parallel
argument holds when y(t)<O. Multiplying (1) by r(t)!f(y(t» and integr-
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ating from tl to t, we obtain

(4) St r(s)y"(s) ds+St r(s)p(s)y'(s) ds+Jt r(s)q(s)ds=O.
tl f(y(s» tl f(y(s» er

By using r'(t)=r(t)p(t) and (4), we have

(5) y'(t)r(t) c+ rt r(s)jl(y(s» (y'(S»2 ds+St r(s)q(s)ds=O,
f(y(t» Jtl (f(y(S»)2 tl

whence we obtain

(6) y'(t)r(t) <C-S
t

r(s)q(s)ds,
f(y(t» tl

where C is a constant.
By (3) and (6), we can obtain

(7) y'(t)<O for t~t2~tl'

From (5) with using (3) and (7), it follows that there is t3~t2 such that
(8) 3+ re r(s)f'(y(s»(y'(s»2 ds :::; r(t) [-y'(t)J.

Jt3 (f(y(s»)2 - f(y(t»

Multiplying (8) by
f'(y(t» [-y'(t)J {3+St r(s)f'(y(s» (y'(s»2 ds} -1;;:::0

f(y(t» t3 (f(y(s»)2 -
and integrating from t3 to t, we have

(9) logf(y(t3» < log {3+St r(s)f'(y(s» (y'(s»2 ds}
f(y(t» t3 (f(y(s»)2 .

By (8) and (9), we obtain
(10) f(y(t3»~r(t)[-y'(t)J for t~t3'

Dividing (10) through by r(t) and integrating from t3 to t, we have

yet) ~y(t3) - f(y(t3) )St _(1)ds, t~t3,
t3 r s

which, because it is supposed that y (t) >0 for t ~th contradicts (3).

Q.E.D.

REMARK. Theorem 1 corresponds to Theorem 1 of Yeh [8J and applies
to all Examples of Yeh [8J.

EXAMPLE 1[8J. Consider the equation

(11) y"(t)+~y'(t)+;2y(t)=0, t~l.

Since r(t) =exp(ftlds) =exp(log t)=t, all conditions of Theorem 1 are
IS

satisfied. Hence, equation (11) is oscillatory.

EXAMPLE 2[8J. Consider the equation
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(12) y"(t) +J_y'(t)+.ly(t) =0 t~l.
2t 4t '

Since r (t) = ../T, all conditions of Theorem 1 are satisfied. Hence, equation
(12) is oscillatory.

EXAMPLE 3. Consider the equation

(13) y"(t) + (sin t)y'(t) + (1-cos t)y(t) =0, t~ ~.

Since r(t) =exp(J:/2sin s ds) =exp( -cos t), all conditions of Theorem 1

are satisfied. Hence, equation (13) is oscillatory. In fact, yet) =sin t is a
solution of (13).

REMARK. Theorem 1 is easier to apply to Example 3 rather than The­
orems 1 and 2 of Yeh [8].

THEOREM 2. Let q(t) ~o and f(y)/y~k>O for y:tO. If (3) holds, then
equation (1) is oscillatory.

Proof. Assume that y (t) is a nonoscillatory solution of (1). Multiplying
(1) by r (t) / y (t) and integrating from t] to t, where t] is so chosen that
yet) >0 for t>t], we obtain

(14) SI r(s)y"(s) ds+S
I

r(s)p(s)y'(s) ds+SI
kr(s)q(s)ds;:;;;O.

I] yes) 11 yes) 11

By (14) with using r'(t)=r(s)p(s), we have

(15) y'(t)r(t) -C+S
I

res) (y'(s))2 dS+kj'l r(s)q(s)ds;:;;;O,
yet) tI (y(s))2 I)

where C is a constant.
By (3) and (15), we obtain

(16) y' (t) <0 for t ~t2 ~t].

From (15) with using (3) and (16), it follows that there is a t3 ?;tZ such
that

(17) :3+J'I res) (y'(s))2 ds:C;: r(t)[ -y'(t)]
13 (y(s))2 - yet)

;\1ultiplying (17) by

[-y'(t)] {3+J't r(s)(y'(s))2 ds}-]
yet) t3 (Y(S))2

and integrating from t3 to t, we have

(18) logy(t3) :C;:log (3+S
t

res) (y'(s))2 ds}.
yet) - t3 (y(s))2

By (I7) and (I8), we obtain
y(t3) ;:;;;r(t)[ -y'(t)], t?;t3.
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The rest of the proof proceeds as Theorem 1. Q.E.D.

REMARK. Theorem 2 corresponds to Theorem 2 of Yeh [8J and applies
to Examples 1-3.

3. The case with deviating argument

THEOREM 3. Let f'(y) exist, f'(y»O for yER'-R- {O} and q(t)~O.

If (3) holds, then equation (2) is oscillatory.

Proof. Suppose that yet) is a nonoscillatory solution of (2). Without loss
of generality, we may assume that y(t»O for t~tl~to, since a parallel
argument holds when y(t) <0. Multiplying (2) by r(t)lf(y(g(t))) and
integrating from t2 to t, where t2 being so large that get) ~tb we obtain

()
I

t r(s)y"(s) St r(s)p(s)y'(s) It -
19 t2 f(y(g(s))) ds+ t2 f(y(g(s))) ds+ t2r (S) q(s) ds-O.

By (19), f'(y»O and g'(t) ~O, we have

( 0) y'(t)r(t) < St () ()d
2 f(y(g(t))) C- tt s q s s,

where C is a constant.
From (3) and (20), we obtain

(21) y'(t)<O for t~t3~t2.

On the other hand, from (2), we may write
(22) r(t)y"(t) +r(t)p(t)y'(t) +r(t)q(t)f(y(g(t))) =0.

By integrating (22) from t4 (>t3) to t, we have
r(t) y' (t) ~r(t4)y' (t4).

By dividing this and integrating t4 to t, we obtain

yet) -y(t4) ~r(t4)y'(t4)St d(S) ,
t4 r s

which, (21) and (3) lead a contradiction as t-HXJ. Q. E. D.

EXAMPLE 4. Consider the equation

(23) y" (t) + (sin t)y' (t) + (I-cos t)y(t+2tr) =0, t~ ~.

Equation (23) is oscillatory by Theorem 3. In fact, yet) =sin t is an oscill­
atory solution of (23).

4. Application to the Emden-Fouler equation

The Emden-Fouler equation [2, 7J encountered in astrophysics and Fermi­
Thomas equation in atomic physics take the following form

(24) (tPy'(t))'+t1y(t)T=0, t>l,
where p, il, r positive constants, r the ratio of odd integers. Equation (24)
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is written in the form

(25) y"(t) +Ly'(t) +t'<-Py(t)T=O.
t

Bobisud [2J proved that equation (25) was oscillatory provided r;;;; 1 and
A~p-l. Wong [7J studied equation (25) for P>l. Here, we can show
that Theorem 1 covers the other case, for example, r= 1, P= 1 and A=

- 0/2). Consider the equation (25) for 7=1, p=l and A= - 0/2). Since

r (t) =exp (ft...Lds) =t, all conditions of Theorem 1 are satisfied. Hence,
1 s

equation (25) is oscillatory, and also equation (24) is oscillatory.
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