Browse > Article

Using oscillatory shear to probe the effects of bidispersity in inverse ferrofluids  

Ekwebelam, C.C. (School of Chemical and Biomolecular Engineering, University of Sydney)
See, H. (School of Chemical and Biomolecular Engineering, University of Sydney)
Publication Information
Korea-Australia Rheology Journal / v.19, no.1, 2007 , pp. 35-42 More about this Journal
Abstract
The effects of particle size distribution on the magnetorheological response of inverse ferrofluids was investigated using controlled mixtures of two monodisperse non-magnetisable powders of sizes $4.6\;{\mu}m\;and\;80{\mu}m$ at constant volume fraction of 30%, subjected to large amplitude oscillatory shear flow. In the linear viscoelastic regime (pre-yield region), it was found that the storage and loss moduli were dependent on the particle size as well as the proportion of small particles, with the highest storage modulus occurring for the monodisperse small particles. In the nonlinear regime (post yield region), Fourier analysis was used to compare the behaviour of the $1^{st}\;and\;3^{rd}$ harmonics ($I_{1}\;and\;I_{3}\;respectively$) as well as the fundamental phase angle as functions of the applied strain amplitude. The ratio of $I_{3}/I_{1}$ was found to become more pronounced with decreasing particle size as well as with increasing proportion of small particles in the bidisperse mixtures. Furthermore, the phase angle was able to clearly show the transition from solid-like to viscous behaviour. The results suggested that the nonlinear response of a bidisperse IFF is dependent on particle size as well as the proportion of small particles in the system.
Keywords
inverse ferrofluid; large amplitude oscillatory shear flow; particle size distribution; bidisperse; linear/nonlinear viscoelastic; Fourier analysis;
Citations & Related Records

Times Cited By Web Of Science : 16  (Related Records In Web of Science)
Times Cited By SCOPUS : 19
연도 인용수 순위
1 Ekwebelam, C.C. and H. See, 2006, Determining the flow curves of an inverse ferrofluid (submitted)
2 Gamota, D.R. and F.E. Filisko, 1991(c), Linear/non-linear mechanical properties of electrorheological materials, in Tao R. (ed), Proc. Int. Conf. on ERFs, World Scientific Publishing Co., New Jersey, 246-263
3 Kordonski, W.I. and D. Golini, 2000, Fundamentals of magnetorheological fluid utilization in high precision finishing, J. Int. Mat. Syst. Struct. 10(9), 83-89
4 Lim, S.T., M.S. Cho, I.B. Jang and H.J. Choi, 2004, Magnetorheological characterization of carbonyl iron based suspension stabilized by fumed silica, J. Magn. Magn. Mat. 282, 170-173   DOI   ScienceOn
5 See, H., 1999, Advances in modeling the mechanisms and rheology of electrorheological fluids, Korea-Australia Rheol. J. 11, 169-195
6 See, H., A. Kawai and F. Ikazaki, 2002, The effect of mixing particles of different size on the electrorheological response under steady shear flow, Rheol. Acta 41, 55-60   DOI
7 See, H. and R. Chen, 2004, The behaviour of a field responsive fluid under shear start-up, Rheol. Acta 43, 175-179   DOI
8 See, H., R. Chen, and M. Keentok, 2004, The creep behaviour of a field responsive fluid, Colloid Polym. Sci. 282, 423-428   DOI
9 Stanway, R., J.L. Sproston and A.K. El-Wahed, 1996, Applications of electro-rheological fluids in vibration control: a survey, Smart Mater. Struct 5, 464-482   DOI   ScienceOn
10 Volkova, O., G. Bossis, M. Guyot, V. Bashtovoi and A. Reks, 2000, Magnetorheology of magnetic holes compared to magnetic particles, J. Rheol. 44, 91-104   DOI   ScienceOn
11 Gamota, D.R. and F.E. Filisko, 1991(a), Dynamic mechanical studies of electrorheological materials: moderate frequencies, J. Rheol. 35, 399-425   DOI
12 Weiss, K.D., J.D. Carlson and D.A. Nixon, 1994, Viscoelastic properties of magneto- and electro-rheological fluids, J. Int. Mat. Syst. Struct. 5, 772-775   DOI
13 Shih, Y. H. and H. Conrad, 1994, Influence of particle size on the dynamic strength of electrorheological fluids, Int. J. Mod. Phys. B 8, 2835-2844   DOI   ScienceOn
14 Li, W.H., H. Du, G. Chen, S.H. Yeo and N. Guo, 2003, Nonlinear viscoelastic properties of MR fluids under large-amplitudeoscillatory- shear, Rheol. Acta 42, 280-286
15 Saldivar-Guerrero, R. Richter, I. Rehberg, N. Aksel, L. Heymann and O.S. Rodriguez-Fernandez, 2005, Liquid to solid transition of inverse ferrofluids, Magnetohydrodynamics 41, 385-390
16 Parthasarathy, M. and D.J. Klingenberg, 1999, Large amplitude oscillatory shear of ER fluids, J. Non-Newt. Fluid Mech. 81, 83-104   DOI   ScienceOn
17 Ota, M. and T. Miyamoto, 1994, Optimum particle size distribution of an electrorheological fluid, J. Appl. Phys. 76, 5528-5532   DOI   ScienceOn
18 Lemaire, E., A. Meunier and G. Bossis, 1995, Influence of the particle size on the rheology of magnetorheological fluids, J. Rheol. 39, 1011-1020   DOI   ScienceOn
19 Klingenberg, D.J., 2001, Magnetorheology: Applications and Challenges, AIChE J. 47, 246-249   DOI   ScienceOn
20 Bombard, A.J.F., M. Knobel, M.R. Alcantara and I. Joekes, 2002, Evaluation of magnetorheological suspensions based on carbonyl iron powders, J. Int. Mat. Syst. Struct. 13, 471-478   DOI
21 Sim, H.G., K.H. Ahn and S.J. Lee, 2003, Three dimensional dynamics simulation of electrorheological fluids under large amplitude oscillatory shear flow, J. Rheol. 47(4), 879-895   DOI   ScienceOn
22 Wilhelm, M., D. Maring and H.W. Spiess, 1995, Fourier-transform rheology, Rheol. Acta 37, 399-405   DOI
23 Kittipoomwong, D. and D.J. Klingenberg, 2005, Dynamic yield stress enhancement in bidisperse magnetorheological fluids, J. Rheol. 49, 1521-1538   DOI   ScienceOn
24 Wu, C.W. and H. Conrad, 1998, Influence of mixed particle size on electrorheological response, J. Appl. Phys. 83(7), 3880-3884   DOI   ScienceOn
25 Otsubo, Y., M. Sekine and M. Katayama, 1992, Electrorheological properties of silica suspensions, J. Rheol. 36, 479-496   DOI
26 Bossis, G. and E. Lemaire, 1991, Yield stresses in magnetic suspensions, J. Rheol. 35, 1345-1354   DOI
27 De Gans, B.J., N. Duin, D. Van den Ende and J. Mellema, 2000, The influence of particle size on the magnetorheological properties of an inverse ferrofluid, J. Chem. Phys. 113, 2032-2042   DOI   ScienceOn
28 Parthsasrathy, M. and D.J. Klingenberg, 1995, A microstructural investigation of the nonlinear response of electrorheological suspensions (II): Oscillatory shear flow, Rheol. Acta 34, 430-439   DOI
29 Skjeltorp, A.T., 1983, One and Two Dimensional Crystallization of Magnetic Holes, Phys Rev Lett. 51, 2306-2309   DOI
30 Magnac, G., P. Meneroud, M.F. Six, G. Patient, R. Leletty and F. Claeyssen, 2006, Characterisation of magneto-rheological fluids for actuators applications, ACTUATOR 2006, 10th International Conference on New Actuators, Bremen, Germany, 856-859
31 Saldivar-Guerrero, R. Richter, I. Rehberg, N. Aksel, L. Heymann and O.S. Rodriguez-Fernandez, 2006, Viscoelasticity of monoand polydisperse inverse ferrofluids, J. Chem. Phys 125, (084907) 1-7
32 Iyengar, V.R. and A.A. Alexandridis, 2004, Wear testing of seals in magneto-rheological fluids, Tribology Transactions 47, 23-28   DOI   ScienceOn
33 Gamota, D.R., A.S. Wineman and F.E. Filisco, 1993, Fourier transfer analysis: nonlinear dynamic response of an electrorheological material, J. Rheol. 37, 919-933   DOI   ScienceOn
34 Popplewell, J., R.E. Rosenweig and J.K. Siller, 1995, Magnetorheology of ferrofluid composites, J. Magn. Magn. Mat. 149, 53-56   DOI   ScienceOn
35 Popplewell, J. and R.E. Rosenweig, 1996, Magnetorheological fluid composites, J. Phys, D: Applied Physics 29, 2297-2303   DOI   ScienceOn
36 Claracq, J., J. Sarrazin and J. Montfort, 2004, Viscoelastic properties of magnetorheological fluids, Rheol. Acta 43, 38-49   DOI
37 Trendler, A.M. and H. Bose, 2004, Influence of particle size on the rheological properties of magnetorheological suspensions, in Lu K., Shen R. and Liu J. (eds), Proc. 9th Int. Conf. of Electrorheological Fluids and Magnetorheological Suspensions, Beijing, China World Scientific, Singapore, 433-438
38 De Gans, B.J., C. Blom, A.P. Philipse and J. Mellema, 1999, Linear viscoelasticity of an inverse ferrofluid, Phys. Rev. E 60, 4518-4527   DOI   ScienceOn
39 See, H., J.S. Field and B. Pfister, 1999, The response of electrorheological fluids under oscillatory squeeze flow, J. Non-Newt. Fluid Mech 84, 149-158   DOI   ScienceOn
40 Gamota, D.R. and F.E. Filisko, 1991(b), High frequency dynamic mechanical study of an aluminosilicate electrorheological material, J. Rheol. 35, 1411-1425   DOI
41 Wereley, N.M., A. Chaudhuri, J.H. Yoo, S. John, S. Kotha, A. Suggs, R. Radhakrishnan, B.J. Love and T.S. Sudarshan, 2006, Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale, J. Int. Mat. Syst. Struct. 17, 393-401   DOI
42 Block, H. and J.P. Kelly, 1988, 'Electro-Rheology', J. Phys, D: Applied Physics 21, 1661-1677   DOI   ScienceOn
43 Parthasarathy, M. and D.J. Klingenberg, 1996, Electrorheology: Mechanisms and Models, Mater. Sci. Eng. R17, 57-103