• Title/Summary/Keyword: orthotropic steel deck bridges

Search Result 24, Processing Time 0.03 seconds

Optimum Life-cycle Cost Design of Orthotropic Steel Deck Bridges (강상판교의 생애주기비용 최적설계)

  • Cho, Hyo Nam;Min, Dae Hong;Lee, Kwang Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.337-349
    • /
    • 2001
  • This study present an optimum deck and girder system design for minimizing the life-cycle cost (LCC) of orthotropic steel deck bridges. The problem of optimum LCC design of orthotropic steel deck bridges is formulated as that of minimization of the expected total LCC that consists of initial cost, maintenance cost, expected retrofit costs for strength, deflection, and fatigue. To demonstrate the effect of LCC optimum design of orthotropic steel deck bridges, the proposed optimum LCC design is compared with the conventional method for orthotropic steel deck bridges design. From the numerical investigations, it may be positively stated that the proposed optimum design procedure for orthotropic steel deck bridges based on the LCC will lead to more rational, economical and safer design.

  • PDF

System Optimization of Orthotropic Steel-Deck Bridges by Load and Resistance Factor Design (LRFD에 의한 강상판형교의 시스템 최적설계)

  • 조효남;민대홍;김현우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.262-271
    • /
    • 1998
  • Recent, more and more steel deck bridges are adopted for the design of long span bridges and the upgrading of existing concrete deck bridges, mainly because of reduced self weight, higher stiffness and efficient erection compared to concrete decks. The main objective of this study is to propose on formulation of the design optimizations to develop an optimal desist program required for optimum desist for orthotropic steel-deck bridges. The objective function of the optimization is formulated as a minimum initial cost design problem. The behavior and design constraints are formulated based on the ASD and LRFD criteria of the Korean Bridge Design Code(1996). The optimum design program developed in this study consists of two steps. In the first step the system optimization of the steel box girder bridges is carried out. And in the second step the program provided the optimum design of the orthotropic steel-deck with close ribs. In the optimal design program the analysis module for the deck optimization is based on the Pelican Esslinger method. The optimizer module of the program utilizes the ADS(Automated Desist Synthesis) routines using the optimization techniques fuor constrained optimization. From the results of real application examples, The cost effectiveness of optimum orthotropic steel-deck bridges designs based on both ASD and LRFD methods is investigated by comparing the results with those of conventional designs, and it may be concluded that the design developed in this study seems efficient and robust for the optimization of orthotropic steel-deck bridges

  • PDF

Multi-Objective Optimization for Orthotrpic Steel Deck Bridges (강상판교의 다목적 최적설계)

  • Cho, Hyo Nam;Chung, Jee Seung;Min, Dae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.395-402
    • /
    • 2002
  • This study proposed a muti-objective optimum design method for rational optimizing of orthotropic steel deck bridges. This multi-objective optimum design method was found to be effective in optimizing multi-objective problems, considering cost and deflection functions. It may ve difficult to optimize orthotropic steel deck bridges using a conventional optimization, since the bridges have several parts and show complex structural behaviors. Therefore, the Pareto curve can be obtained by performing the multi-objective optimization for real orthotropic steel deck bridges, using the multi-level technique with excellent efficiency. A reasonable and economical design can be attained using the Parato curve in the cost and deflection functions of the bridge. Thus, more reasonable design values can be determined based on a comparison with those using a conventional design procedure.

The Analytical Study on the Cause of Fatigue Damage and the Improvement of Fatigue Performance for Orthotropic Steel Deck (강바닥판 피로손상 원인규명 및 피로성능 개선에 관한 해석적 연구)

  • Kyung Kab-Soo;Shin Dong-Ho;Kim Kyo-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.647-654
    • /
    • 2006
  • In orthotropic steel decks, it is likely to have defects due to fatigue damages because most of structural joints(the connection of longitudinal rib and transverse rib, the connection of deck plate and longitudinal rib) are connected by welds. However. orthotropic steel decks have many advantages. such as light weight and reduction of construction time. in comparison with concrete decks. Therefore. they are mostly used in long-span bridges and urban highway bridges. This study consists of the cause identication of fatigue damage and the suggestion of rational thickness on deck plate about the connection of deck plate and longitudinal rib. The results are as follows: fatigue damage cause at the connection of deck plate and longitudinal rib is local deformation in deck plate. And, rational thickness of deck plate is 16mm thickness.

  • PDF

Multi-level Optimization for Orthotropic Steel Deck Bridges (강바닥판교의 다단계 최적설계)

  • Cho, Hyo-Nam;Chung, Jee-Sung;Min, Daee-Hong;Lee, Kwang-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.439-448
    • /
    • 2000
  • A multi-level design synthesis (MLDA) algorithm for efficiently optimizing orthotropic steel deck bridges is proposed in the paper, because it is usually very difficult to optimize orthotropic steel deck bridges using a conventional single-level (CSL) algorithn since the bridges have a large number of members and show complex structural behaviors. In the proposed MLDS algorithms a coordination method is introduced to divide the bridges into main girders and orthotropic steel decks and decomposition method is also used to reduce the number of design variables of the decks for system level optimization. For efficient optimization of the bridges the MLDS algorithm incorporates the crucial approximation techliques such as constraints deletion and stress reanalysis. The constraint deletion technique for deflection is found to be very useful for the optimization problem of the bridges, since a deflection constraint is usually inactive in the design. Considering the complex system of the bridges, the proposed the efficient stress reanalysis technique may prove to be a very effective method, since it does not require expensive design sensitivity analyses. The applicability and robustness of the MLDS algorithm is demonstrated using various numerical examples and compared with other algorithm presently available so far.

  • PDF

Analysis of the Steel Deck Bridges using the Finite Strip Method (유한대판법을 사용한 강상판 교량의 해석)

  • 최창근;홍현석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.77-84
    • /
    • 1998
  • The finite strip method is presented for the analysis of steel deck bridges. Like the Pelikan-Esslinger design method for the steel deck bridges, steel deck is treated as an equivalent orthotropic plate. In the presented method, the deck is discretised by finite strips in the longitudinal direction and the effect of main girder or floor beam deflection can also be accounted for. In this method, the terms of harmonic series at elastically support such as transverse floor or diaphragm in steel deck become coupled. Solutions of this method are compared with other available analytical and numerical solution, and good agreement is observed.

  • PDF

Recommended properties of elastic wearing surfaces on orthotrotropic steel decks

  • Fettahoglu, Abdullah
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.357-374
    • /
    • 2015
  • Orthotropic decks composed of deck plate, ribs, cross beams and wearing surface are frequently used in industry to span long distances due to their light structures and load carrying capacities. As a result they are broadly preferred in industry and there are a lot of bridges of this type exist in the world. Nevertheless, some of them cannot sustain the anticipated service life and damages in form of cracks develop in steel components and wearing surface. Main reason to these damages is seen as the repetitive wheel loads, namely the fatigue loading. Solutions to this problem could be divided into two categories: qualitative and quantitative. Qualitative solutions may be new design methodologies or innovative materials, whereas quantitative solution should be arranging dimensions of deck structure in order to resist wheel loads till the end of service life. Wearing surface on deck plate plays a very important role to avoid or mitigate these damages, since it disperses the load coming on deck structure and increases the bending stiffness of deck plate by forming a composite structure together with it. In this study the effect of Elastic moduli, Poisson ratio and thickness of wearing surface on the stresses emerged in steel deck and wearing surface itself is investigated using a FE-model developed to analyze orthotropic steel bridges.

Analysis Models for Automatic Design of Orthotropic Steel Deck Bridges (자동화설계를 위한 강상판교의 해석모델)

  • Cho, Hyo Nam;Chung, Jee Seung;Min, Dae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.363-372
    • /
    • 1999
  • This study proposes useful analysis models for automatic design of orthotropic steel deck bridges. For the selection of the best or the most proper analysis model this paper presents various analysis models based on grillage model, which are then compared with each other in terms of reliability of analysis, computing time and effectiveness. Also the selected analysis models are compared with Pelikan-Esslinger method well-known for orthotropic steel deck bridge analysis. The effectiveness of proposed analysis models is demonstrated by means of a numerical example that is a three-span continuous (60m+80m+60m=200m) orthotropic steel-box girder bridge.

  • PDF

Composite deck construction for the rehabilitation of motorway bridges

  • Greiner, R.;Ofner, R.;Unterweger, H.
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.67-84
    • /
    • 2002
  • Traffic decks of steel or composite motorway bridges sometimes provide the opportunity of using the composite action between an existing steel deck and a reinforced concrete plate (RC plate) in the process of rehabilitation, i.e., to increase the load-carrying capacity of the deck for concentrated traffic loads. The steel decks may be orthotropic decks or also unstiffened steel plates, which during the rehabilitation are connected with the RC plate by shear studs, such developing an improved local load distribution by the joint behaviour of the two plate elements. Investigations carried out, both experimentally and numerically, were performed in order to quantitatively assess the combined static behaviour and to qualitatively verify the usability of the structure for dynamic loading. The paper reports on the testing, the numerical simulation as well as the comparison of the results. Conclusions drawn for practical design indicated that the static behaviour of these structures may be very efficient and can also be analysed numerically. Further, the results gave evidence of a highly robust behaviour under fatigue equivalent cyclic traffic loading.

A Parametric Study on Bulkhead Plate of Orthotropic Steel Deck Bridge (강바닥판교의 벌크헤드 플레이트에 관한 매개변수 연구)

  • 공병승;김진만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.333-339
    • /
    • 2003
  • Recently, the bridges become greater according to development of a construction technology. This phenomenon requires long span bridge, so that increases the dead weight. The orthotropic steel deck bridges have much advantages such as the light dead weight and the reduction of construction period. And almost whole process of carried out is manufactured at factory, so it can cause the increase of quality authoritativeness. But orthotropic steel deck bridge is consist of structure by welding, it can not avoid a lot of welding jobs, defects and transformation by welding are becoming problem accordingly. Specially, topical stress concentration phenomenon in cross connection area of longitudinal and transverse rib causes fatigue failure. The Bulkhead Plate for prevention of this stress concentration phenomenon was applied by changing the orthotropic steel deck of Williamsburg bridge in USA. But, it is principle that a Bulkhead Plate is not established in the domestic design standard. Therefore, it is estimated that the study for installation of Bulkhead Plate is needed. This treatise with considering these circumstances proves efficiency of Bulkhead Plate and will be presented optimal design details through finite element analysis according to change the geometrical of Bulkhead Plate and tile cross-connection area of longitudinal and transverse rib.

  • PDF