• Title/Summary/Keyword: orthogonal functions

Search Result 216, Processing Time 0.03 seconds

An Orthogonal Representation of Estimable Functions

  • Yi, Seong-Baek
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.837-842
    • /
    • 2008
  • Students taking linear model courses have difficulty in determining which parametric functions are estimable when the design matrix of a linear model is rank deficient. In this note a special form of estimable functions is presented with a linear combination of some orthogonal estimable functions. Here, the orthogonality means the least squares estimators of the estimable functions are uncorrelated and have the same variance. The number of the orthogonal estimable functions composing the special form is equal to the rank of the design matrix. The orthogonal estimable functions can be easily obtained through the singular value decomposition of the design matrix.

Flexural-Torsional Coupled Vibration of Slewing Beams Using Various Types of Orthogonal Polynomials

  • Kapania Rakesh K.;Kim, Yong-Yook
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1790-1800
    • /
    • 2006
  • Dynamic behavior of flexural-torsional coupled vibration of rotating beams using the Rayleigh-Ritz method with orthogonal polynomials as basis functions is studied. Performance of various orthogonal polynomials is compared to each other in terms of their efficiency and accuracy in determining the required natural frequencies. Orthogonal polynomials and functions studied in the present work are: Legendre, Chebyshev, integrated Legendre, modified Duncan polynomials, the special trigonometric functions used in conjunction with Hermite cubics, and beam characteristic orthogonal polynomials. A total of 5 cases of beam boundary conditions and rotation are studied for their natural frequencies. The obtained natural frequencies and mode shapes are compared to those available in various references and the results for coupled flexural-torsional vibrations are especially compared to both previously available references and with those obtained using NASTRAN finite element package. Among all the examined orthogonal functions, Legendre orthogonal polynomials are the most efficient in overall CPU time, mainly because of ease in performing the integration required for determining the stiffness and mass matrices.

Identification of System from Generalized Orthogonal Basis Function Expansions

  • Bae, Chul-Min;Wada, Kiyoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.26.1-26
    • /
    • 2001
  • In this paper, we will expand and generalize the orthogonal functions as basis functions for dynamical system representations. The orthogonal functions can be considered as generalizations of, for example, the pulse functions, Laguerre functions, and Kautz functions, and give rise to an alternative series expansion of rational transfer functions. It is shown row we can exploit these generalized basis functions to increase the speed of convergence in a series expansion. The set of Kautz functions is discussed in detail and, using the power-series equivalence, the truncation error is obtained. And so we will present the influence of noises to use Kautz function on the identification accuracy.

  • PDF

Design of Controller for Nonlinear System Using Modified Orthogonal Neural Network (수정된 직교 신경망을 이용한 비선형 시스템 제어기 설계)

  • Kim, Sung-Sik;Lee, Young-Seog;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.142-145
    • /
    • 1997
  • This paper presents an modified orthogonal neural network(MONN) based on orthogonal functions and applies the network to nonlinear system control. The accuracy of orthogonal neural network is essentially dependent on the choice of basic orthogonal functions. Modified orthogonal neural network is modified model of orthogonal neural network with input transformation to adapt its basic orthogonal functions. The results show that the modified orthogonal neural network has the excellent performance of approximating and controlling nonlinear systems and the input transformation make the ability of modified orthogoneural neural network better than one of orthogonal neural network.

  • PDF

System Control Using Orthogonal Function (직교함수를 이용한 시스템의 제어)

  • Ahn, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.468-470
    • /
    • 1998
  • We have studied system identification model reduction method, optimal control by orthogonal functions. This paper presents the easy method that solves algebra equations instead of differential equations using Walsh, Haar, Block pulse function of orthogonal functions in state equation. The proposed algorithm is verified through some examples.

  • PDF

An Unifying Design Algorithm for Efficient Digital Implementation of Continuous PID Controller using General Discrete Orthogonal Functions (연속 PID 제어기의 효율적 디지털 구현을 위한 일반적인 이산직교함수들을 이용한 통합 설계 알고리즘의 제안)

  • Kim, Yoon-Sang;Oh, Hyun-Cheol;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.263-269
    • /
    • 1999
  • In this paper, an unifying design algorithm is presented for efficient digital implementation of continuous PID controller using general discrete orthogonal functions. The proposed algorithm is an algebraic method to determine controller parameters, which can unify controller design procedures divided into three ways. A set of linear equations for the controller design are derived from simple algebraic transformation based on general discrete orthogonal functions. By solving these equations, all of the controller parameters can be determined directly and simultaneously, which thus makes the design procedure systematic and straightforward. It does not involve any trial and error procedure, hence the difficulty of conventional approach can be avoided. The simulation results and discussions are given to demonstrate the efficiency of the proposed method.

  • PDF

A study on Modified Method of Orthogonal Neural Network for Nonlinear system approximation (비선형 시스템의 근사화를 위한 직교 신경망의 수정 기법에 관한 연구)

  • 김성식;이영석
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.33-40
    • /
    • 1998
  • This paper presents an Modified Orthogonal Neural Network(MONN), new modified model of Orthogonal Neural Network(0NN) based on orthogonal functions, and applies it to nonlinear system approximator. ONN proposed by Yang and Tseng, doesn't have the problems of traditional multilayer feedforward neural networks such as the determination of initial weights and the numbers of layers and processing elements. And tranining of ONN converges rapidly. But ONN cannot adapt its orthogonal functions to a given system. The accuracy of ONN, in terms of the minimal possible deviation between system and approximator, is essentially dependent on the choice of basic orthogonal functions. In order to improve ability and effectiveness of approximate nonlinear systems, MONN has an input transformation layer to adapt its basic orthogonal functions to a given nonlinear system. The results show that MONN has the excellent performance of approximate nonlinear systems and the input transfnrmation makes the ability of MONN better than one of ONN.

  • PDF

Another Look at Average Formulas of Nevanlinna Counting Functions of Holomorphic Self-maps of the Unit Disk

  • Kim, Hong-Oh
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.1
    • /
    • pp.155-163
    • /
    • 2008
  • This is an extended version of the paper [K] of the author. The average formulas on the circles and disks around arbitrary points of Nevanlinna counting functions of holomorphic self-maps of the unit disk, given in terms of the boundary values of the selfmaps, are shown to give another characterization of the whole class or a special subclass of inner functions in terms of Nevanlinna counting function in addition to the previous applications to Rudin's orthogonal functions.

Comparison of Algebraic design methodologies for Unknown Inputs Observer via Orthogonal Functions (대수적 미지입력관측기 설계를 위한 직교함수의 응용)

  • Ahn, P.;Lee, S.J.;Kim, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2543-2545
    • /
    • 2005
  • It is well known that the orthogonal function is a very useful to estimate an unknown inputs in the linear dynamic systems for its recursive algebraic algorithm. At this aspects, derivative operation(matrix) of orthogonal functions(walsh, block pulse and haar) are introduced and shown how it can useful to design an UIO(unknown inputs observer) design.

  • PDF