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Abstract. This is an extended version of the paper [K] of the author. The average

formulas on the circles and disks around arbitrary points of Nevanlinna counting functions

of holomorphic self-maps of the unit disk, given in terms of the boundary values of the self-

maps, are shown to give another characterization of the whole class or a special subclass

of inner functions in terms of Nevanlinna counting function in addition to the previous

applications to Rudin’s orthogonal functions.

1. Introduction

For a holomorphic self-map ϕ of the unit disk D on the complex plane, the
Nevanlinna counting function Nϕ is defined by

Nϕ(w) =


∑

ϕ(z)=w

log
1
|z|

, if w ∈ ϕ(D),

0 , if w /∈ ϕ(D).

It plays a very important role in the holomorphic change of variables by w = ϕ(z) in
the integral representations and in the study of the composition operator Cϕ(f) =
f ◦ ϕ [Sh]. The average formulas of Nϕ on the circles and disks around the origin
are given and exploited to the explicit representation of the Nevanlinna counting
functions of Rudin’s orthogonal functions in [K]. In this paper, we compute the
averages of Nϕ on the circles and disks around arbitrary points in the unit disk
in terms of the boundary values of ϕ and add another application of the average
formulas for the characterization of the inner functions as well as a special class of
inner functions. See Theorems 2.3 and 2.4. We also clarify the results in [K] on the
Nevanlinna counting function of an orthogonal function ϕ and the essential norm
of the corresponding composition operator Cϕ. See Theorem 4.1.
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2. Nϕ(a) := Nϕ(a) + µa(∂D)

For a holomorphic self-map ϕ and a ∈ D, the Frostman shift τa◦ϕ :=
a− ϕ(z)
1− aϕ(z)

has the canonical factorization as follows:

a− ϕ(z)
1− aϕ(z)

= Ba(z)Sa(z)Fa(z),

where Ba is the Blaschke product

Ba(z) =
∏

ϕ(zi)=a

|zi|
zi

zi − z

1− ziz
, (multiplicities counted)

Sa is the singular inner function

Sa(z) = exp
(
−
∫

∂D

ζ + z

ζ − z
dµa(ζ)

)
with the associated positive Borel measure µa singular with respect to the normal-
ized Lebesgue measure dσ on the boundary ∂D of D, and Fa is the outer function
given by

Fa(z) = eiγ exp
(∫

∂D

ζ + z

ζ − z
log
∣∣∣∣ a− ϕ∗(ζ)
1− aϕ∗(ζ)

∣∣∣∣ dσ(ζ)
)

,

with γ real, and ϕ∗(ζ) = limr↗1 ϕ(rζ) which exists almost every ζ ∈ ∂D. See [G]
for the canonical factorization. By Applying Jensen’s formula [R2, p.307; G, p.54]
to the Frostman shift on the circle |z| = r and letting r ↗ 1, we get a formula as in
[K]

Nϕ(a) : = Nϕ(a) + µa(∂D)(2.1)

= − log
∣∣∣∣ a− ϕ(0)
1− aϕ(0)

∣∣∣∣+ ∫
∂D

log
∣∣∣∣ a− ϕ∗(ζ)
1− aϕ∗(ζ)

∣∣∣∣ dσ(ζ)

= − log |a− ϕ(0)|+
∫

∂D

log |a− ϕ∗(ζ)| dσ(ζ).

We know that µa(∂D) = 0 nearly all a ∈ D, i.e., for all a ∈ D except for a set of
logarithmic capacity zero and Nϕ(a) → 0 as |a| ↗ 1. See [F], [K], [R3], [R4]. The
following average formulas are given in terms of the boundary values of ϕ and can
be computed as in [K], where the average formulas of Nϕ are given for the circles
and disks only around the origin. The usefulness of the formulas is exhibited in [K]
but another view will be given in Theorem 2.3 and 2.4. We note that the sets of
capacity zero have the linear as well as area measure zero. Therefore, the averages
for Nϕ and Nϕ coincide because they are the same for nearly all a ∈ D.
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Theorem 2.1.(Average formulas) Let ϕ be a holomorphic self-map of D.

(a) For 0 < r < 1− |a|,∫
∂D

Nϕ(a + rη)dσ(η) =
∫

∂D

Nϕ(a + rη)dσ(η)(2.2)

= − log+ |a− ϕ(0)|
r

+
∫

∂D

log+ |a− ϕ∗(ζ)|
r

dσ(ζ)

= − log+ |a− ϕ(0)|
r

+
∫ ||a−ϕ∗||∞

r

σ{ζ ∈ ∂D : |a− ϕ∗(ζ)| > t}
t

dt

= − log+ |a− ϕ(0)|
r

−
∫ ||a−ϕ∗||∞

r

log
t

r
dα(t),

where α(t) = σ{ζ ∈ ∂D : |a−ϕ∗(ζ)| > t}, log+ x = max(log x, 0) and ||a−ϕ∗||∞ =
esssup{|a− ϕ∗(ζ)| : ζ ∈ ∂D}.

(b) For D(a;R) ⊂ D \ ϕ(0), where D(a;R) is the open disk around a of radius
R,

1
A(D(a;R))

∫∫
D(a;R)

Nϕ(ω)dA(ω) =
1

A(D(a;R))

∫∫
D(a;R)

Nϕ(ω)dA(ω)(2.3)

= − log |a− ϕ(0)|+
∫

∂D

log |a− ϕ∗(ζ)|dσ(ζ)

+
1
2

∫
|ϕ∗(ζ)−a|<R

{(
|a− ϕ∗(ζ)|

R

)2

− 1− log
(
|a− ϕ∗(ζ)|

R

)2
}

dσ(ζ),

where dA = 2ρdρdσ(ζ) denotes the normalized are a measure.

Proof. The proof for the case a = 0 is given in [K], but we will give a complete proof
of the average formulas around arbitrary point a ∈ D \ ϕ(0) for the convenience of
the reader. Let us recall the well known integral

(2.4)
∫

∂D

log |rη − ω|dσ(η) = log+ |ω|
r

+ log r.

(a) Applying (2.4) to (2.1) with ω = a − ϕ(0) and with ω = a − ϕ∗(ζ), we get
(2.3) using Fubini’s theorem. The other identities below (2.3) follow by applying
Theorem 8.16 in [R2] and by applying integration by parts in [R1, Ex 17, p.141].
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(b) We integrate (2.2) with respect to
2r

R2
dr. The first integral is

1
R2

∫ R

0

2r log+ |a− ϕ(0)|
r

dr(2.5)

=
1

R2

∫ R

0

2r log |a− ϕ(0)|dr − 1
R2

∫ R

0

2r log rdr

= log
|a− ϕ(0)|

R
+

1
2

.

The second integral becomes by Fubini’s theorem

1
R2

∫
∂D

∫ R

0

2r log+ |a− ϕ∗(ζ)|
r

drdσ(ζ)(2.6)

=
1

R2

∫
|a−ϕ∗(ζ)|≤R

[∫ |a−ϕ∗(ζ)|

0

2r log |a− ϕ∗(ζ)|dr −
∫ |a−ϕ∗(ζ)|

0

2r log rdr

]
dσ(ζ)

+
1

R2

∫
|a−ϕ∗(ζ)|>R

[∫ R

0

2r log |a− ϕ∗(ζ)|dr −
∫ R

0

2r log rdr

]
dσ(ζ)

=
1

R2

∫
|a−ϕ∗(ζ)|≤R

|a− ϕ∗(ζ)|2

2
dσ(ζ) +

∫
|a−ϕ∗(ζ)|>R

(
log

|a− ϕ∗(ζ)|
R

+
1
2

)
dσ(ζ)

=
1
2

∫
|a−ϕ∗(ζ)|≤R

(
|a− ϕ∗(ζ)|

R

2
)

dσ(ζ) +
∫

∂D

log
|a− ϕ∗(ζ)|

R
dσ(ζ)

−
∫

|a−ϕ∗(ζ)|≤R

log
|a− ϕ∗(ζ)|

R
dσ(ζ) +

1
2
− 1

2
σ{ζ ∈ ∂D : |a− ϕ∗(ζ)| ≤ R}

=
∫

∂D

log
|a− ϕ∗(ζ)|

R
dσ(ζ) +

1
2

+
1
2

∫
|a−ϕ∗(ζ)|≤R

{(
a− ϕ∗(ζ)

R

)2

− 1− log
(
|a− ϕ∗(ζ)|

R

)2
}

dσ(ζ).

Therefore, we have (2.4) from (2.6), (2.7). �

The sub-averaging property of the Nevanlinna counting function [Sh, p.190]
follows as a corollary.
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Corollary 2.2. (Sub-averaging property of Nϕ and Nϕ)

Nϕ(a) ≤ Nϕ(a) ≤ 1
R2

∫∫
D(a;R)

Nϕ(ω)dA(ω)

=
1

R2

∫∫
D(a;R)

Nϕ(ω)dA(ω)

for D(a;R) ⊂ D\ϕ(0).

Proof. It follows from (b) if we note that x− 1 ≥ log x (x > 0) and

Nϕ(a) = Nϕ(a) + µa(∂D)

= − log |a− ϕ(0)|+
∫

∂D

log |a− ϕ∗(ζ)|dσ(ζ).

�

We apply the average formula (b) to prove the following characterization of
inner functions.

Theorem 2.3. Let ϕ be a nonconstant holomorphic self-map of D. Then the
following are equivalent:

(a) ϕ is an inner function.

(b)
1

A(D(a;R))

∫∫
D(a;R)

Nϕ(ω)dA(ω) = Nϕ(a) for every D(a;R) ⊂ D\ϕ(0).

(c) Nϕ is harmonic in D\ϕ(0).

This theorem gives a characterization of the special subclass of inner functions
whose Frostman shifts τa ◦ ϕ is a Blaschke product for every a 6= ϕ(0) in terms of
the Nevanlinna counting functions.

Theorem 2.4. Let ϕ be a nonconstant holomorphic self-map of D. Then the
following are equivalent:

(a) ϕ is an inner function such that the Frostman shift τa ◦ ϕ is a Blaschke
product for every a ∈ D\ϕ(0).

(b) ϕ is an inner function with µa(∂D) = 0 for every a ∈ D\ϕ(0).

(c)
1

A(D(0;R))

∫∫
D(a;R)

Nϕ(a + ω)dA(ω) = Nϕ(a) for every D(a;R) ⊂ D\ϕ(0).

(d) Nϕ is harmonic in D\ϕ(0).
(e) Nϕ is the Green function for D with pole at ϕ(0).
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Theorem 2.4 follows easily from Theorem 2.3 if we note

Nϕ(a) = Nϕ(a) + µa(∂D) = − log
∣∣∣∣ a− ϕ(0)
1− aϕ(0)

∣∣∣∣
for an inner function ϕ. We only prove Theorem 2.3.

Proof of Theorem 2.3. (c) ⇒ (b) : It is known that any harmonic function satisfies
the area mean-value property. See [R4, Ex9, p.250].
(b) ⇒ (a) : We note that if ϕ∗(ζ) = ϕ(0) on a set E ⊂ ∂D of positive measure then
ϕ(z) = ϕ(0) for all z ∈ D; a contradiction to the assumption that ϕ is a nonconstant

map. We can write D\ϕ(0) =
∞⋃

n=1
D(an;Rn), a countable union of the disks, by the

Lindeloef property. The condition (b) now implies∫
|ϕ∗(ζ)−an|<Rn

{(
|a− ϕ∗(ζ)|

Rn

)2

− 1− log
(
|a− ϕ∗(ζ)|

Rn

)2
}

dσ(ζ) = 0.

Since the integrand is nonnegative, the set En := {ζ ∈ ∂D | ϕ∗(ζ) ∈ D(a;Rn)} has
measure zero for every n. Therefore, |ϕ∗(ζ)| = 1 a.e. on ∂D; that is ϕ is an inner
function.
(a) ⇒ (c) : For an inner function ϕ, it is known from (2.1)

Nϕ(a) = Nϕ(a) + µa(∂D) = log
∣∣∣∣ a− ϕ(0)
1− aϕ(0)

∣∣∣∣ ,
which is obviously harmonic in D\ϕ(0). �

3. Examples

It would be interesting to have more intrinsic conditions for the inner functions
in Theorem 2.4. Suppose ϕ is an inner function with µa(∂D) = 0 for all a ∈ D\ϕ(0).
Then ∑

ϕ(zi)=a

log
1
|zi|

= Nϕ(a) = − log
∣∣∣∣ a− ϕ(0)
1− aϕ(0)

∣∣∣∣ ,(3.1)

i.e.,
∏

ϕ(zi)=a

|zi| =
∣∣∣∣ a− ϕ(0)
1− aϕ(0)

∣∣∣∣ for all a ∈ D.

We note that no singular inner function can satisfy (3.1). Therefore, such inner
function must be of the form ϕ = B · Sµ with B a nontrivial Blaschke product
and Sµ a singular inner function. For the Blaschke products (the case µ = 0), no
intrinsic characterization (for example, the conditions on zeros) is known to have
µa(∂D) = 0 for all a, or to have all Frostman shifts as Blaschke products. Every
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finite Blaschke products obviously have µa(∂D) = 0 for all a ∈ D and the Blaschke
products with zeros in a finite union of Stolz angles are known to have µa(∂D) = 0
for all a ∈ D. See [MN] for example. For the case µ 6= 0, (3.1) forces ϕ(0) = 0.
So, ϕ(z) is of the form ϕ(z) = zmB1(z)Sµ(z) with m ≥ 1 and B1 another Blaschke
product. We do not have a complete characterization of such ϕ but we have the
following example by modifying Example 2 in [GI].

Example 1. For the inner function ϕ(z) = ze−
1+z
1−z , we have µa(∂D) = 0 for any

a 6= 0(= ϕ(0)). In fact, if a 6= 0 the Frostman shift
a− ϕ(z)
1− aϕ(z)

cannot have the

radial limit zero at any boundary point ζ ∈ ∂D; so it is a Blaschke product by
Theorem 6.2 in [G].

4. Rudin’s orthogonal functions

An holomorphic self-map ϕ of the unit disk D is called a Rudin’s orthogonal
function if the sequence of powers ϕn, n = 0, 1, 2, · · · , is orthogonal in the Hardy
space H2, that is, if ∫

∂D

ϕ∗n(ζ)ϕ∗m(ζ)dσ(ζ) = 0,

whenever n 6= m. It is known that if ϕ is orthogonal then ϕ(0) = 0 and its pullback
measure, µϕ(E) = σ(ϕ∗−1(E)), is radial, that is, µϕ(E) = µϕ(ζE), ζ ∈ ∂D. See [B],
[S] for the recent developments of the Rudin’s orthogonal functions. In this section,
we clarify the results in [K] on the Nevanlinna counting function of an orthogonal
function ϕ and the essential norm of the corresponding composition operator Cϕ.

Theorem 4.1. For an orthogonal holomorphic self-map ϕ of D, we have

(a) Nϕ(a) = −
∫ 1

|a| log
t

|a|
dα(t),where α(t) = σ{ζ ∈ ∂D : |ϕ∗(ζ)| > t}, and

(b) ||Cϕ||e = σ{ζ ∈ ∂D : |ϕ∗(ζ)| = 1},where ||Cϕ||e denotes the essential norm of
Cϕ in H2.

Proof. (a) From (2.1) and the radial symmetry of the pullback measure µϕ, we see
that Nϕ is also radial:

Nϕ(a) = − log |a|+
∫

∂D

log |a− ϕ∗(ζ)|dσ(ζ)

= − log |a|+
∫
D

log |a− z|dµϕ(z)

= − log |a|+
∫
D

log ||a| − z|dµϕ(z)

= Nϕ(|a|).
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Therefore, Nϕ(a) is the same as its radialization as follows:

Nϕ(a) =
∫

∂D

Nϕ(|a|ζ)dσ(ζ)

= −
∫ 1

|a|
log

t

|a|
dα(t)

from Theorem 2.1(a) or Theorem 3.1(a) [K].
(b) follows from the facts:

||Cϕ||e = lim
|a|→1

Nϕ(a)/ log
1
|a|

[Sh];

Nϕ(a) ≤ Nϕ(a) for all a ∈ D;

Nϕ(a) = Nϕ(a) nearly all a ∈ D;

lim
|a|→1

Nϕ(a)/ log
1
|a|

= lim
|a|→1

1
log 1

|a|

∫ 1

|a|
ln

t

|a|
dα(t)

= σ{ζ ∈ ∂D : |ϕ∗(ζ)| = 1},

as was shown in [K]. �

For example, if ϕ is the orthogonal function of Sundberg [S], then

(4.1) Nϕ(a) =


1
2

log
1
2

+ log
1
|a|

, |a| ≤ 1
2
;

1
2

log
1
|a|

,
1
2
≤ a < 1,

and ||Cϕ||e = 1/2; so Cϕ is not compact. On the other hand, if ϕ is the orthogonal
function of Bishop [B] with µϕ(ρζ) = 2ρdρdσ(ζ), then

(4.2) Nϕ(a) =
1
2
(2− |a|2) log

1
|a|

− 1
4
(1− |a|2)

and ||Cϕ||e = 0; that is, Cϕ is a compact operator.
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3, 1935.

[G] J. B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, 96. Aca-
demic Press, New York-London 1981.

[GI] P. Gorkin and K. Izuch, Some counter examples in subalgebras of L∞(D), Indiana
Univ. Math. J., 40(1991), 1301-1313.

[K] H. O. Kim, Averages of Nevanlinna counting functions of holomorphic self-maps of
the unit disk, Hokkaido Math. J., 33(2004), 697-706.

[MN] R. Mortini and A. Nicolau, Frostman shifts of inner functions, J. D’Analyse Math.,
92(2004), 285-326.

[R1] W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill Book Co.,
New York-Auckland-Dusseldorf 1976.

[R2] W. Rudin, Real and Complex Analysis, 3d ed., McGraw-Hill Book Co., New York
1987.

[R3] W. Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam
1969.

[R4] W. Rudin,A generalization of a theorem of Frostman, Math. Scand., 21(1967), 136-
143.

[S] C. Sundberg, Measures induced by analytic functions and a problem of Walter Rudin,
J. AMS, 16(2003), 68-90.

[Sh] J. H. Shapiro, Composition operators and classical function theory, Universitext:
Tracts in Mathematics. Springer-Verlag, New York 1993.


