• Title/Summary/Keyword: orthogonal function

Search Result 467, Processing Time 0.034 seconds

Comparison of Algebraic design methodologies for Unknown Inputs Observer via Orthogonal Functions (대수적 미지입력관측기 설계를 위한 직교함수의 응용)

  • Ahn, P.;Lee, S.J.;Kim, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2543-2545
    • /
    • 2005
  • It is well known that the orthogonal function is a very useful to estimate an unknown inputs in the linear dynamic systems for its recursive algebraic algorithm. At this aspects, derivative operation(matrix) of orthogonal functions(walsh, block pulse and haar) are introduced and shown how it can useful to design an UIO(unknown inputs observer) design.

  • PDF

The Optimum Design of Magnet Over Head Crane and the Sensitivity Analysis for Orthogonal Array (마그네트 천장크레인의 최적설계와 직교배열을 이용한 민감도 분석)

  • 노영희;홍도관;최석창;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.786-790
    • /
    • 2002
  • In this study, structural optimum design was applied to the girder of magnet over head crane. The optimization was carried out using ANSYS Code for the deadweight of girder, especially focused on the thickness of its upper, lower, side and reinforced plates. The weight could be reduced up to around 15% with constraints of its deformation, stress, natural frequency and buckling strength. The structural safety was also verified by the buckling analysis of its panel structure. It might be thought to be very useful to design the conventional structures for the weight save through the structural optimization. The objective function and restricted function were estimated by the orthogonal array, and the sensitivity analysis of design variable fur that was operated.

  • PDF

A Optimization of Butterfly Valve using the Orthogonal Array and the Characteristics Fuction (직교배열표와 특성함수를 이용한 Butterfly Valve의 최적설계)

  • Kang J.;Choi J.S.;Park Y.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1967-1974
    • /
    • 2005
  • The butterfly valve has been used to control a flow effectively in the industrial because of its lightweight, simple structure and the rapidity of its manipulation. However, it is difficult to have the existing structural optimization using field analysis from CFD to structure analysis when the structure is influenced by fluid. This paper is evaluated the specificity to get the flow characteristic and stability of the butterfly valve using FEM and CFD. Also, it accomplished the shape optimization design using the orthogonal arrangement and characteristic function. Research result, a few experiments showed the optimal results of three dimensional structures to be multi-objective.

  • PDF

A META-SOFTWARE SYSTEM FOR ORTHOGONAL DESIGNS AND HADAMARD MATRICES

  • Kotsireas, Ilias S.;Koukouvinos, Christos;Simos, Dimitris E.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1571-1581
    • /
    • 2011
  • In this paper, we construct inequivalent Hadamard matrices based on several new and old full orthogonal designs, using circulant and symmetric block matrices. Not all orthogonal designs produce inequivalent Hadamard matrices, because the corresponding systems of equations do not possess solutions. The systems of equations arising when we search for inequivalent Hadamard matrices from full orthogonal designs using circulant and symmetric block matrices, can be concisely described using the periodic autocorrelation function of the generators of the block matrices. We use Maple, Magma, C and Unix tools to find many new inequivalent Hadamard matrices.

Global Optimization Using a Sequential Algorithm with Orthogonal Arrays in Discrete Space (이산공간에서 순차적 알고리듬(SOA)을 이용한 전역최적화)

  • Cho, Bum-Sang;Lee, Jeong-Wook;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.858-863
    • /
    • 2004
  • In the optimized design of an actual structure, the design variable should be selected among any certain values or corresponds to a discrete design variable that needs to handle the size of a pre-formatted part. Various algorithms have been developed for discrete design. As recently reported, the sequential algorithm with orthogonal arrays(SOA), which is a local minimum search algorithm in discrete space, has excellent local minimum search ability. It reduces the number of function evaluation using orthogonal arrays. However it only finds a local minimum and the final solution depends on the initial value. In this research, the genetic algorithm, which defines an initial population with the potential solution in a global space, is adopted in SOA. The new algorithm, sequential algorithm with orthogonal arrays and genetic algorithm(SOAGA), can find a global solution with the properties of genetic algorithm and the solution is found rapidly with the characteristics of SOA.

  • PDF

Transmit Diversity Using Windowing Scheme in OFDM System (OFDM 시스템에서 윈도윙 기법을 이용한 송신 다이버시티)

  • Kim, Yong-June;Rim, Min-Joong;Lim, Dae-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9A
    • /
    • pp.871-877
    • /
    • 2007
  • In this paper, we propose a new transmit diversity scheme using window functions in orthogonal frequency division multiplexing (OFDM) system. Transmit diversity of the scheme is varied with window functions and the condition of the window function to maximize transmit diversity is derived. The proposed scheme can be considered as a generalization of the diversity schemes such as cyclic delay diversity (CDD), orthogonal transmit diversity (OTD), and frequency switched transmit diversity (FSTD).

The Structure of Scaling-Wavelet Neural Network (스케일링-웨이블렛 신경회로망 구조)

  • 김성주;서재용;김용택;조현찬;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.65-68
    • /
    • 2001
  • RBFN has some problem that because the basis function isnt orthogonal to each others the number of used basis function goes to big. In this reason, the Wavelet Neural Network which uses the orthogonal basis function in the hidden node appears. In this paper, we propose the composition method of the actual function in hidden layer with the scaling function which can represent the region by which the several wavelet can be represented. In this method, we can decrease the size of the network with the pure several wavelet function. In addition to, when we determine the parameters of the scaling function we can process rough approximation and then the network becomes more stable. The other wavelets can be determined by the global solutions which is suitable for the suggested problem using the genetic algorithm and also, we use the back-propagation algorithm in the learning of the weights. In this step, we approximate the target function with fine tuning level. The complex neural network suggested in this paper is a new structure and important simultaneously in the point of handling the determination problem in the wavelet initialization.

  • PDF

Analysis and Optimal Control of Linear Time-delay Systems via Fast Walsh Transform (고속윌쉬변환에 의한 선형시지연계의 해석 및 최적제어)

  • Han, Sang-In;Lee, Myeong-Gyu;Kim, Jin-Tae;An, Du-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.601-606
    • /
    • 1999
  • A Walsh function method is proposed in this report for the analysis and optimal control of linear time-delay systems, which is based on the Picard's iterative approximation and fast Walsh transformation. In this research, the following results are obtained: 1) The differential and integral equation can be solved by transforming into a simple algebraic equation as it was possible with the usual orthogonal function method: 2) General orthogonal function methods require usage of Walsh operational matrices for delay or advance and many calculations of inverse matrices, which are not necessary in this method. Thus, the control problems of linear time-delay systems can be solved much faster and readily.

  • PDF

Variability of Vertical Distribution of Volume Scattering Observed in the Shallow Water (천해 체적 산란강도의 수직분포 변동성)

  • 박경주;김은혜;강돈혁;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.69-77
    • /
    • 2003
  • Measurements of backscattered intensity were made over a shallow water using 300 ㎑and 1200 ㎑ bottom mounted ADCP (Acoustic Doppler Current Profiler) to determine the temporal variability of vertical distribution of high-frequency volume scattering strength (Sv). The variability of Sv in relatively deep water column(85 m and 113 m was due to the daily vertical migration, probably of larger zooplankton. However it was not found with 1200㎑ data at shallow water column. From the empirical orthogonal function (EOF) analysis using 1200㎑ data, the vertical distribution of the first mode eigenvectors of Sv is characterized by the presence of the maximum values near the bottom of the water.