• Title/Summary/Keyword: organic semiconductor

Search Result 570, Processing Time 0.027 seconds

Analysis of the Output Characteristics of IGZO TFT with Double Gate Structure (더블 게이트 구조 적용에 따른 IGZO TFT 특성 분석)

  • Kim, Ji Won;Park, Kee Chan;Kim, Yong Sang;Jeon, Jae Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.281-285
    • /
    • 2020
  • Oxide semiconductor devices have become increasingly important because of their high mobility and good uniformity. The channel length of oxide semiconductor thin film transistors (TFTs) also shrinks as the display resolution increases. It is well known that reducing the channel length of a TFT is detrimental to the current saturation because of drain-induced barrier lowering, as well as the movement of the pinch-off point. In an organic light-emitting diode (OLED), the lack of current saturation in the driving TFT creates a major problem in the control of OLED current. To obtain improved current saturation in short channels, we fabricated indium gallium zinc oxide (IGZO) TFTs with single gate and double gate structures, and evaluated the electrical characteristics of both devices. For the double gate structure, we connected the bottom gate electrode to the source electrode, so that the electric potential of the bottom gate was fixed to that of the source. We denote the double gate structure with the bottom gate fixed at the source potential as the BGFP (bottom gate with fixed potential) structure. For the BGFP TFT, the current saturation, as determined by the output characteristics, is better than that of the conventional single gate TFT. This is because the change in the source side potential barrier by the drain field has been suppressed.

Synthesis of functional ZnO nanoparticles and their photocatalytic properties

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Kim, Min-Hee;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.54-54
    • /
    • 2010
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation(REDOX) reaction will occur on the ZnO surface and generate ${O_2}^-$ and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into $CO_2$ and $H_2O$. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with $TiO_2$. $Zn(OH)_2$ was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

Simulation of Capillary Flow Along a Slot-die Head for Stripe Coatings (Stripe 코팅용 슬롯 다이 헤드 모세관 유동 전산모사)

  • Yoo, Su-Ho;Lee, Jin-Young;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.92-96
    • /
    • 2019
  • In the presence of ${\mu}-tip$ embedded in a slot-die head for stripe coatings, there arises the capillary flow that limits an increase of the stripe density, which is required for the potential applications in organic light-emitting diode displays. With an attempt to suppress it, we have employed a computational fluid dynamics software and performed simulations by varying the ${\mu}-tip$ length and the contact angles of the head lip and ${\mu}-tip$. We have first demonstrated that such a capillary flow phenomenon (a spread of solution along the head lip) observed experimentally can be reproduced by the computational fluid dynamics software. Through simulations, we have found that stronger capillary flow is observed in the hydrophilic head lip with a smaller contact angle and it is suppressed effectively as the contact angle increases. When the contact angle of the head lip increases from $16^{\circ}$ to $130^{\circ}$, the distance a solution can reach decreases sharply from $256{\mu}m$ to $44{\mu}m$. With increasing contact angle of the ${\mu}-tip$, however, the solution flow along the ${\mu}-tip$ is disturbed and thus the capillary flow phenomenon becomes more severe. If the ${\mu}-tip$ is long, the capillary flow also appears strong due to an increase of flow resistance (electronic-hydraulic analogy). It can be suppressed by reducing the ${\mu}-tip$ length, but not as effectively as reducing the contact angle of the head lip.

Atmospheric Pressure Plasma Etching Technology for Forming Circular Holes in Perovskite Semiconductor Materials (페로브스카이트 반도체 물질에 원형 패턴을 형성하기 위한 상압플라즈마 식각 기술)

  • Kim, Moojin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.10-15
    • /
    • 2021
  • In this paper, we formed perovskite (CH3NH3PbI3) thin films on glass with wet coating methods, and used various analytical techniques to discuss film thickness, surface roughness, crystallinity, composition, and optical property. The coated semiconductor material has no defects and is uniform, the surface roughness value is very small, and a high absorption rate has been observed in the visible light area. Next, in order to implement the hole shape in the organic-inorganic layer, Samples in the order of a metal mask with holes at regular intervals, a glass coated with a perovskite material, and a magnet were etched with atmospheric pressure plasma equipment. The shape of the hole formed in the perovskite material was analyzed by changing the time. It can be seen that more etching is performed as the time increases. The sample with the longest processing time was examined in more detail, and it was classified into 7 regions by the difference according to the location of the plasma.

Fabrication of Solution-Based Cylindrical Microlens with High Aspect Ratio (고종횡비를 갖는 용액기반 원통형 마이크로렌즈 제조)

  • Jeon, Kyungjun;Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.70-76
    • /
    • 2021
  • A cylindrical microlens (CML) has been widely used as an optical element for organic light-emitting diodes (OLEDs), light diffusers, image sensors, 3D imaging, etc. To fabricate high-performance optoelectronic devices, the CML with high aspect ratio is demanded. In this work, we report on facile solution-based processes (i.e., slot-die and needle coatings) to fabricate the CML using poly(methyl methacrylate) (PMMA). It is found that compared with needle coating, slot-die coating provides the CML with lower aspect ratio due to the wide spread of solution along the hydrophilic head lip. Although needle coating provides the CML with high aspect ratio, it requires a high precision needle array module. To demonstrate that the aspect ratio of CML can be enhanced using slot-die coating, we have varied the molecular weight of PMMA. We can achieve the CML with higher aspect ratio using PMMA with lower molecular weight at a fixed viscosity because of the higher concentration of PMMA solute in the solution. We have also shown that the aspect ratio of CML can be further boosted by coating it repeatedly. With this scheme, we have fabricated the CML with the width of 252 ㎛ and the thickness of 5.95 ㎛ (aspect ratio=0.024). To visualize its light diffusion property, we have irradiated a laser beam to the CML and observed that the laser beam spreads widely in the vertical direction of the CML.

Effects on the Al2O3 Thin Film by the Ar Pulse Time in the Atomic Layer Deposition (원자층 증착에 있어서 아르곤 펄스 시간이 Al2O3 박막에 미치는 효과)

  • Kim, Ki Rak;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.157-160
    • /
    • 2021
  • As an insulator for a thin film transistor(TFT) and an encapsulation material of organic light emitting diode(OLED), aluminum oxide (Al2O3) has been widely studied using several technologies. Especially, in spite of low deposition rate, atomic layer deposition (ALD) has been used as a process method of Al2O3 because of its low process temperature and self-limiting reaction. In the Al2O3 deposition by ALD method, Ar Purge had some crucial effects on the film properties. After reaction gas is injected as a formation of pulse, an inert argon(Ar) purge gas is injected for gas desorption. Therefore, the process parameter of Ar purge gas has an influence on the ALD deposited film quality. In this study, Al2O3 was deposited on glass substrate at a different Ar purge time and its structural characteristics were investigated and analyzed. From the results, the growth rate of Al2O3 was decreased as the Ar purge time increases. The surface roughness was also reduced with increasing Ar purge time. In order to obtain the high quality Al2O3 film, it was known that Ar purge times longer than 15 sec was necessary resulting in the self-limiting reaction.

α-Pinene Sensing Properties of Rhombohedral In2O3 Nanoparticles Prepared using the Microwave-assisted Hydrothermal Method (마이크로파 보조 수열 합성법으로 제조한 Rhombohedral In2O3 나노입자의 α-pinene 감지 특성)

  • Byeong-Hun, Yu;Hyo Jung, Lee;Joo Ho, Hwang;Ji-Wook, Yoon
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.418-422
    • /
    • 2022
  • α-pinene is a natural volatile organic compound secreted by coniferous trees to protect themselves from attacks by insects, microorganisms, and viruses. Recently, studies have reported that α-pinene possesses pharmacological effects on various biological reactions such as anxiolytic, sleep-enhancing, anti-nociceptive, and inflammatory activity. Thus, forest bathing has recently received great attention as a novel therapy for treating severe diseases as well as psychological issues. However, appropriate places and timings for effective therapies are still veiled, because on-site monitoring of α-pinene gas in forests is barely possible. Although portable chemosensors could allow real-time analysis of α-pinene gas in forests, the α-pinene sensing properties of chemosensors have never been reported thus far. Herein, we report for the first time, the α-pinene sensing properties of an oxide semiconductor gas sensor based on rhombohedral In2O3 (h-In2O3) nanoparticles prepared by a microwave-assisted hydrothermal reaction. The h-In2O3 nanoparticle sensor showed a high response to α-pinene gas at ppm levels, even under humid conditions (for example, relative humidity of 50 %). The purpose of this research is to identify the potential of oxide semiconductor gas sensors for implementing portable devices that can detect α-pinene gas in forests in real-time.

Development of Simple Test Method using VOC Analyzer to Measure Volatile Organic Compounds Emission for Particleboards (VOC Analyzer를 이용한 파티클보드로부터 방산되는 휘발성유기화합물의 간이 측정방법 개발)

  • An, Jae-Yoon;Kim, Sumin;Kim, Jin-A;Kim, Hyun-Joong;Mun, Suck-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.22-30
    • /
    • 2006
  • The volatile organic compound (VOC) Analyzer is a portable device to measure the four main aromatic hydrocarbon gases: toluene, ethylbenzene, xylene and styrene. With the VOC Analyzer, a semiconductor gas sensor eliminates the need for the carrier gas which is required for conventional gas chromatographs. In addition, since the semiconductor gas sensor is supersensitive to gas components, it is not necessary to use a conventional gas concentrator or other complicated equipment. Compared with other measurement methods, the VOC analyzer is useful for measuring toluene, ethylbenzene, xylene and styrene in wood-based panel because of its ease in obtaining field results and repeating the test. The VOC Analyzer primarily measures four VOC in the air. In this study, we designed a test method of VOC measurement for particle board. A specimen was sealed in 3L polyester bag, after 96hours we could measure maximum VOC emission level that is a stabilized VOC Value. For easy, fast and economic testing of TVOC emission from wood-based panel, we developed the test method with the VOC Analyzer. The VOC Analyzer is expected to gain widespread use in the manufacturing field where a quick and easy test for VOC emission from wood-based panel is required. Furthermore, the VOC Analyzer promises to become an easier, faster and more economic technique than the currently used standard methods.

Thin film growth of ε-Ga2O3 and photo-electric properties of MSM UV photodetectors (ε-Ga2O3 박막 성장 및 MSM UV photodetector의 전기광학적 특성)

  • Park, Sang Hun;Lee, Han Sol;Ahn, Hyung Soo;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.179-186
    • /
    • 2019
  • In this study, we investigated the structural properties of $Ga_2O_3$ thin films and the photo-electrical properties of metal-semiconductor-metal (MSM) photodetectors deposited by Ti/Au electrodes. $Ga_2O_3$ thin films were grown at different temperatures using metal organic chemical vapor deposition (MOCVD). The crystal phase of $Ga_2O_3$ changed from ${\varepsilon}$-phase to ${\beta}$-phase depending on the growth temperature. The crystal structure of ${\varepsilon}-Ga_2O_3$ was confirmed by X-ray diffraction (XRD) analysis and the formation mechanism of crystal structure was discussed by scanning electron microscopy (SEM) images. From the results of current-voltage (I-V) and time-dependent photoresponse characteristics under the illumination of external lights, we confirmed that the MSM photodetector fabricated by ${\varepsilon}-Ga_2O_3$ showed much better photocurrent characteristics in the 266 nm UV range than in the visible range.

Growth of Ga2O3 films on 4H-SiC substrates by metal organic chemical vapor deposition and their characteristics depend on crystal phase (유기 금속 화학 증착법(MOCVD)으로 4H-SiC 기판에 성장한 Ga2O3 박막과 결정 상에 따른 특성)

  • Kim, So Yoon;Lee, Jung Bok;Ahn, Hyung Soo;Kim, Kyung Hwa;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.149-153
    • /
    • 2021
  • ε-Ga2O3 thin films were grown on 4H-SiC substrates by metal organic chemical vapor deposition (MOCVD) and crystalline quality were evaluated depend on growth conditions. It was found that the best conditions of the ε-Ga2O3 were grown at a growth temperature of 665℃ and an oxygen flow rate of 200 sccm. Two-dimensional growth was completed after the merge of hexagonal nuclei, and the arrangement direction of hexagonal nuclei was closely related to the crystal direction of the substrate. However, it was confirmed that crystal structure of the ε-Ga2O3 had an orthorhombic rather than hexagonal. Crystal phase transformation was performed by thermal treatment. And a β-Ga2O3 thin film was grown directly on 4H-SiC for the comparison to the phase transformed β-Ga2O3 thin film. The phase transformed β-Ga2O3 film showed better crystal quality than directly grown one.