• Title/Summary/Keyword: organic molecules

Search Result 530, Processing Time 0.02 seconds

Properties of the Microinterface formed by Phosphatidylcholine and 1-Butanol as Reaction Media of Hydrolysis of Phosphatidylcholine

  • Yamazaki, Keiju;Imai, Masanao;Suzuki, Isao
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.82-85
    • /
    • 2004
  • Microinterface of W/Omicroemulsion prepared by phosphatidylcholine was used as reaction media of hydrolysis of phosphatidylcholine by phospholipaseA$_2$. Phosphatidylcholine was used as an amphiphile and was acted as a substrate. Organic phase of W/Omicroemulsion in this study was prepared by mixed organic solvents i.e. 2,2,4-trimethylpentane (isooctane) as a main solvent and 1-butanol as a co-solvent. The effect of added 1-butanol was remarkable not only on reaction beginning but also on high reaction rate. The hydrolysis reaction was dramatically initiated when 1-butanol was injected into the running isooctane/PC system. The enhancement by 1-butanol addition into single organic solvent was our original finding compare with previous conventional organic solvent. The reaction rate was elevated by the added amount of 1-butanol. The enhanced reaction rate was about 150-folds. This enhancement was speculated as 1-butanol adsorption on the microinterface. The adsorbed 1-butanol improved the properties of microinterface, especially its mobility was increased by difference of the chain length between phosphatidylcholine and 1-butanol. PhospholipaseA$_2$ molecules were located on the microinterface due to modified mobility of microinterface. Located phospholipaseA$_2$ on the microinterface reacted easily with phosphatidylcholine molecule. As a result high reaction rate was obtained. Microinterfacial properties were successfully improved by adsorbed 1-butanol molecule, and were favorable to appear higher reactivity of phospholipaseA$_2$.

  • PDF

Molecular Characterization of Dissolved Organic Matter Unveils their Complexity, Origin, and Fate in Glacier and Glacial-Fed Streams and Lakes on the Tibetan Plateau

  • Kim, Min Sung;Zhou, Lei;Choi, Mira;Zhang, Yunlin;Zhou, Yongqiang;Jang, Kyoung-Soon
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.192-199
    • /
    • 2021
  • Alpine glaciers harbor a large quantity of bio-labile dissolved organic matter (DOM), which plays a pivotal role in global carbon cycling as glacial-fed streams are headwaters of numerous large rivers. To understand the complexity, origin, and fate of DOM in glaciers and downstream-linked streams and lakes, we elucidated the molecular composition of DOM in two different Tibetan Plateau glaciers, eight glacial-fed streams and five lakes, using an ultrahigh-resolution 15 Tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The compositional changes of the DOM samples revealed that glacier DOM mostly exhibited sulfur-containing organic compounds (CHOS species). We also found that aliphatic formulae contributed more than 50% of the total abundance of assigned molecules in glacier samples, and those compounds were significantly related to CHOS species. The CHO proportions of glacial-fed streams and lakes samples increased with increasing distance from glacial terminals. The relative contribution of terrestrial-derived organics (i.e., lignins and tannins) declined while microbial-originated organics (aliphatics) increased with increasing elevation. This suggested the gradual input of allochthonous materials from non-glacial environment and the degradation of microbe-derived compounds along lower elevations. Alpine glaciers are retreating as a result of climate change and they nourished numerous streams, rivers, and downstream-linked lakes. Therefore, the interpretations of the detailed molecular changes in glacier ice, glacial-fed streams, and alpine lakes on the Tibetan Plateau could provide broad insights for understanding the biogeochemical cycling of glacial DOM and assessing how the nature of DOM impacts fluvial ecosystems.

Dual Photonic Transduction of Porous Silicon for Sensing Gases (이중의 광학적 변화를 이용한 다공성 실리콘 가스센서 제작)

  • Koh, Young-Dae;Kim, Sung-Jin;Jang, Seung-Hyun;Park, Cheol-Young;Sohn, Hong-Lae
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.99-104
    • /
    • 2007
  • Porous silicon exhibiting dual optical properties, both $Febry-P{\acute{e}}rot$ fringe (optical reflectivity) and photoluminescence had been developed and used as chemical sensors. Porous silicon samples were prepared by an electrochemical etch of p-type silicon wafer (boron-doped, <100> orientation, resistivity ; $1-10{\Omega}cm$). Two different types of porous silicon, fresh porous silicon (Si-H terminated) and oxidized porous silicon (Si-OH terminated)by the thermal oxidation, were prepared. Then the samples were exposed to the vapor of various organics, such as methanol, acetone, hexane, and toluene. Both reflectivity and photoluminescence were simultaneously measured under the exposure of organic vapors for sensing VOC's. These surface-modified samples showed unique respond in both reflectivity and photoluminescence with various organic vapors. While polar molecules exhibit greater quenching photoluminescence, molecules having higher vapor pressure show greater red shift for reflectivity.

Crystallization of Poly(vinylidene fluoride)-SiO2 Hybrid Composites Prepared by a Sol-gel Process

  • Cho, Jae Whan;Sul, Kyun Il
    • Fibers and Polymers
    • /
    • v.2 no.3
    • /
    • pp.135-140
    • /
    • 2001
  • Organic-inorganic hybrid composites consisting of poly(vinylidene fluoride) (PVDF) and SiO$_2$ were prepared through a sol-gel process and the crystallization behavior of PVDF in the presence of $SiO_2$ networks was investigated by spectroscopic, thermal and x-ray diffraction measurements. The hybrid composites obtained were relatively transparent, and brittleness increased with increasing content of tetraethoxysilane (TEOS). It was regarded from FT-lR and DSC thermal analyses that at least a certain interaction existed between PVDF molecules and the $SiO_2$ networks. X-ray diffraction measurements showed that all of the hybrid samples had a crystal structure of PVDF ${\gamma}$-phase. Fresh gel prepared from the sol-gel reaction showed a very weak x-ray diffraction peak near 2$\theta$=$21^{\circ}$ due to PVDF crystallization, and Intensity increased grade-ally with time after gelation. The crystallization behavior of PVDF was strongly affected by the amount of $SiO_2$ networks. That is, $SiO_2$ content directly influenced preference and disturbance fur crystallization. In polymer-rich hybrids, $SiO_2$ networks had a favorable effect on the extent of PVDF crystallization. In particular, the maximum portent crystallinity of PVDF occurred at the content of 3.7 wt% $SiO_2$ and was higher than that of pure PVDF. However. beyond about 10 wt% $SiO_2$, the crystallization of PVDF was strongly confined.

  • PDF

Crystal Structure Analysis of 6-Ethoxy-3-phenyl-5a,9a-dihydro-3H-chromen[4,3-c][1,2]oxazole-3a(4H)-carbonitrile

  • Malathy, P.;Sharmila, P.;Srinivasan, J.;Manickam, Bakthadoss;Aravindhan, S.
    • Journal of Integrative Natural Science
    • /
    • v.9 no.2
    • /
    • pp.94-102
    • /
    • 2016
  • The crystal structure of the potential active 6-ethoxy-3-phenyl-5a,9a-dihydro-3H-chromen[4,3-c][1,2]oxazole-3a(4H)-carbonitrile ($C_{19}H_{15}N_2O_3$) has been determined from single crystal X-ray diffraction technique. The title compound crystallizes in the monoclinic space group C2/c with unit cell dimension a= 29.3026(9) ${\AA}$, b= 6.7695(2) ${\AA}$ and c= 19.7597(6) ${\AA}$ [${\alpha}= 90^{\circ}$, ${\beta}= 125.709(10)^{\circ}$ and ${\gamma}= 90^{\circ}$]. Single crystals suitable for X-ray diffraction were obtained by slow evaporation method, the isoxazole and six membered pyran rings adopts envelope conformation. The crystal packing of the molecules is stabilized by the weak $C-H{\ldots}N$ hydrogen bond interaction.

Crystal Structure Analysis of Methyl 8-bromo-3-phenyl-5a,9a-dihydro-3H-chromen [4,3-c][1,2] isoxazole-3a(4H)-carboxylate

  • Malathy, P.;Sharmila, P.;Srinivasan, J.;Manickam, Bakthadoss;Aravindhan, S.
    • Journal of Integrative Natural Science
    • /
    • v.9 no.2
    • /
    • pp.103-112
    • /
    • 2016
  • The crystal structure of the potential active Methyl 8-bromo-3-phenyl-5a,9a-dihydro-3H-chromen [4,3-c][1,2] isoxazole-3a(4H)-carboxylate ($C_{18}H_{15}BrNO_4$) has been determined from single crystal X-ray diffraction technique. The title compound crystallizes in the triclinic space group Pī with unit cell dimension a=8.3129 (3) ${\AA}$, b=9.5847 (4) ${\AA}$ and c=11.1463(4) ${\AA}$ [${\alpha}=98.457(3)^{\circ}$, ${\beta}=102.806(2)^{\circ}$ and ${\gamma}=105.033(5)^{\circ}$]. Single crystals suitable for X-ray diffraction were obtained by slow evaporation method, the isoxazole and six membered pyran rings adopts envelope conformation. In the crystal, molecules are linked via pairs of inter molecular $C-H{\ldots}O$ hydrogen bonds to form dimmers.

Chain Length Effect of Dialkoxynaphthalene End-Capped Divinylbenzene for OTFT

  • Kim, Ran;Yun, Hui-Jun;Yi, Mi-Hye;Shin, Sung-Chul;Kwon, Soon-Ki;Kim, Yun-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.420-425
    • /
    • 2012
  • The new organic semiconductors which are composed of divinylbenzene core unit and alkoxynaphthalene on both sides, 1,4-bis-2-(6-octyloxy)naphthalen-2-ylvinylbenzene (BONVB), 1,4-bis-2-(6-decyloxy)naphthalen-2-ylvinylbenzene (BDNVB) and 1,4-bis-2-(6-dodecyloxy)naphthalen-2-ylvinylbenzene (BDDNVB) were synthesized by Wittig reaction. The structures of obtained BONVB, BDNVB and BDDNVB were confirmed by FT-IR and mass spectroscopy. UV-absorption of thin film showed H-aggregates and J-aggregates due to closely packed structure between adjacent molecules. The characterization of vacuum-evaporated films by Xray diffraction (XRD) and atomic force microscopy (AFM) showed that the chain length of alkoxy group affects the crystallinity and morphology. BONVB with octyloxy group showed the mobility of $0.011cm^2/V{\cdot}s$, on/off ratio of $1.31{\times}10^5$, and a subthreshold slope of 0.93 V.

Effect of microwave irradiation on lipase-catalyzed reactions in ionic liquids

  • An, Gwangmin;Kim, Young Min;Koo, Yoon-Mo;Ha, Sung Ho
    • Analytical Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.138-145
    • /
    • 2017
  • Microwave-assisted organic synthesis has gained a remarkable interest over the past years because of its advantages - (i) rapid energy transfer and superheating, (ii) higher yield and rapid reaction, (iii) cleaner reactions. Ionic liquids are well known for their unique properties such as negligible vapor pressure and high thermal stability. With these properties, ionic liquids have gained increasing attention as green, multi-use reaction media. Recently, ionic liquids have been applied as reaction media for biocatalysis. Lipase-catalyzed reactions in ionic liquids provide high activity and yield compared to conventional organic solvents or solvent free system. Since polar molecules are generally good absorbent to microwave radiation, ionic liquids were investigated as reaction media to improve activity and productivity. In this study, therefore, the effect of microwave irradiation in ionic liquids was investigated on lipase catalyzed reactions such as benzyl acetate synthesis and caffeic acid phenethyl ester synthesis. Comparing to conventional heating, microwave heating showed almost the same final conversion but increased initial reaction rate (3.03 mM/min) compared to 2.11 mM/min in conventional heating at $50^{\circ}C$.

Crystal Structure Theory and Applications of 14-Ethoxy-4,6,-dimethyl-8.12- dioxa-4.6-diazatetracyclo [8.8.0.02,7.013,18]octadeca-13,15,17-triene-3,5-dione

  • Ganapathy, Jagadeesan;Sivakumar, G.;Manickam, Bakthadoss;Sanmargam, Aravindhan
    • Journal of Integrative Natural Science
    • /
    • v.8 no.1
    • /
    • pp.19-29
    • /
    • 2015
  • In view of the growing medicinal importance of chromene and its derivatives, the single crystal X-ray diffraction study was carried out for the potential active 4,6-dimethyl-9-phenyl-8,12-dioxa-4,6-diazatetracyclo [8.8.0.02,7.013,18]octadeca-2(7),13,15,17-tetraene-3,5,11-trione-2-ethoxyphenyl (2E)-but-2-enoate ($C_{18}H_{20}N_2O_5$). In the title compound are two molecules exist in the asymmetric unit. It crystallizes in the monoclinic space group $P2_1/c$ with unit cell dimension a=14.608(3) ${\AA}$, b=12.845(3) and c= 17.781(4) [alpha & gamma=$90^{\circ}$ beta=$91.233(5)^{\circ}$]. Both pyran and pyran ring of the chromene moiety adopts sofa conformation in the molecule A & B. The crystal structure is stabilized by intramolecular C-H...O hydrogen bond interaction.

One-Dimensional Hydrogen-Bonded Infinite Chains Composed of a Nickel(II) Macrocyclic Complex and Organic Ligands

  • Choi, Ki-Young;Ryu, Hae-Il;Lee, Kyu-Chul;Lee, Han-Hyoung;Hong, Choon-Pyo;Kim, Jae-Hyun;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1150-1154
    • /
    • 2003
  • The reactions of [Ni(L)(H₂O)₂]Cl₂ (L = 2,5,9,12-tetramethyl-1,4,8,11-tetraazacyclotetradecane) with terephtalate (tp) and 2,5-pyridinedicarboxylate (pdc) generate one-dimensional nickel(II) complexes, [Ni(L)(H₂O)₂](tp) · ₄H₂O (1) and [Ni(L)(H₂O)₂](pdc)·₄H₂O (2). The structures have been characterized by X-ray crystallography, magnetic susceptibility and spectroscopy. The crystal structures of 1 and 2 show a distorted octahedral coordination geometry around the Ni(II) ion, with secondary amines of the macrocycle and two water molecules at the trans position. Complexes 1 and 2 display the one-dimensional hydrogen-bonded infinite chains. The magnetic behavior of all compounds exhibits weak interchain antiferromagnetic interactions with J values of -1.09(3) for 1 and -1.14(2) cm-1 for 2.