Browse > Article
http://dx.doi.org/10.5806/AST.2017.30.3.138

Effect of microwave irradiation on lipase-catalyzed reactions in ionic liquids  

An, Gwangmin (Department of Biological Engineering, Inha University)
Kim, Young Min (Department of Biological Science and Biotechnology, Hannam University)
Koo, Yoon-Mo (Department of Biological Engineering, Inha University)
Ha, Sung Ho (Department of Advanced Materials & Chemical Engineering, Hannam University)
Publication Information
Analytical Science and Technology / v.30, no.3, 2017 , pp. 138-145 More about this Journal
Abstract
Microwave-assisted organic synthesis has gained a remarkable interest over the past years because of its advantages - (i) rapid energy transfer and superheating, (ii) higher yield and rapid reaction, (iii) cleaner reactions. Ionic liquids are well known for their unique properties such as negligible vapor pressure and high thermal stability. With these properties, ionic liquids have gained increasing attention as green, multi-use reaction media. Recently, ionic liquids have been applied as reaction media for biocatalysis. Lipase-catalyzed reactions in ionic liquids provide high activity and yield compared to conventional organic solvents or solvent free system. Since polar molecules are generally good absorbent to microwave radiation, ionic liquids were investigated as reaction media to improve activity and productivity. In this study, therefore, the effect of microwave irradiation in ionic liquids was investigated on lipase catalyzed reactions such as benzyl acetate synthesis and caffeic acid phenethyl ester synthesis. Comparing to conventional heating, microwave heating showed almost the same final conversion but increased initial reaction rate (3.03 mM/min) compared to 2.11 mM/min in conventional heating at $50^{\circ}C$.
Keywords
microwave; ionic liquids; lipase; activity; initial reaction rate;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. N. Gedye and J. B. Wei, Can. J. Chem., 76(5), 525-532 (1998).   DOI
2 D. R. Baghurst and D. M. P. Mingos, Chem. Soc. Rev., 20, 1-47 (1991).   DOI
3 R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, and J. Rousell, Tetrahedron Lett., 27(3), 279-282 (1986).   DOI
4 R. J. Giguere, T. L. Bray, S. M. Duncan, and G. Majetich, Tetrahedron Lett., 27 (41), 4945 4948 (1986).   DOI
5 I. Roy and M. N. Gupta, Curr. Sci., 85(12), 1685-1693 (2003).
6 C. O. Kappe, D. Dallinger, and S. S. Murphree, 'Practical Microwave Synthesis for Organic Chemists', Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009.
7 S. H. Ha, N. L. Mai, G. An, and Y. -M. Koo, Bioresource Technol., 102(2), 1214-1219 (2011).   DOI
8 J. Kim and S. H. Ha, Korean Chem. Eng. Res., 53(5), 570-575 (2015).   DOI
9 Y. H. Moon, S. M. Lee, S. H. Ha, and Y.-M. Koo, Korean J. Chem. Eng., 23(2), 247-263 (2006).   DOI
10 V. I. Parvulescu and C. Hardacre, 2007, Chem. Rev., 107(6), 2615-2665 (2007).   DOI
11 F. van Rantwijk and R. A. Sheldon, Chem. Rev., 107(6), 2757-2785 (2007).   DOI
12 M. Moniruzzaman, N. Kamiya, and N. Goto, Org. Biomol. Chem., 8(13), 2887-2899 (2010).   DOI
13 H. Hu, H. Yang, P. Huang, D. Cui, Y. Peng, J. Zhang, F. Lu, J. Lian, and D. Shi, Chem. Commun., 46, 3866-3868 (2010).   DOI
14 M.-G. Ma, J.-F. Zhu, Y.-J. Zhu, and R.-C. Sun, Chem. Asian J., 9(9), 2378-2391 (2014).   DOI
15 Q. Zhang, S. H. Zhao, J. Chen, and L. W. Zhang, J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci., 1002, 411-417 (2015).   DOI
16 S. Mallakpour and Z. Rafiee, Polym. Degrad. Stab., 93(4), 753-759 (2008).   DOI
17 X. Liu, Y. Wang, J. Kong, C Niea, and X Lina, Anal. Methods, 4, 1012-1018 (2012).   DOI
18 T. Maugard, D. Gaunt, M. D. Legoy, and T. Besson, Biotech. Lett., 25(8), 623-629 (2003).   DOI
19 N. E. Leadbeater, L. M. Stencel, and E. C. Wood, Org. Biomol. Chem,, 5, 1052-1055 (2007).   DOI
20 H. Zhao, G. A. Baker, Z. Song, O. Olubajo, L. Zanders, and S. M. Campbell, J. Mol. Cat. B: Enzym,, 57(1-4), 149-157 (2009).   DOI
21 M.-C. Parker, T. Besson, S. Lamare, and M.-D. Legoy, Tetrahed. Lett., 37(46), 8383-8386 (1996).   DOI
22 T. D. Matos, N. King, L. Simmons, C. Walker, A. R. McClain, A. Mahapatro, F. J. Rispoli, K. T. McDonnell, and V. Shah, Green Chem. Lett. Rev., 4(1), 73-79 (2011).   DOI
23 S. H. Lee, Y. -M. Koo, and S. H. Ha, Korean J. Chem. Eng., 25(6), 1456-1462 (2008).   DOI
24 A. Widjaja, T. H. Yen, and Y. H. Ju, J. Chin. Inst. Chem. Eng., 39(5), 413-418 (2008).   DOI
25 G. D. Yadav and P. S. Lathi, J. Mol. Cat. A: Chem., 223(1-2), 51-56 (2004).   DOI
26 J.-R. Carrillo-Munoz, D. Bouvet, E. Guibe-Jampel, A. Loupy and A. Petit, J. Org. Chem,, 61(22), 7746-7749 (1996).   DOI
27 P. Kerep and H. Ritter, Macromol. Rapid Commun., 27(9), 707-710 (2006).   DOI