• Title/Summary/Keyword: organic insulator

Search Result 192, Processing Time 0.023 seconds

A study on the Electrical Characteristics of $\alpha$-Sexithiophene Thin Film ($\alpha$-Sexithienyl 박막의 전기적 특성에 관한 연구)

  • 오세운;권오관;최종선;김영관;신동명
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.518-520
    • /
    • 1997
  • Recently, thiophene oligomer with short chain lengths has received much attention as model compounds for facilitating better understanding of electronic and optical properties of polymers, because oligomer is well-defined chemical systems and its conjugation chain length can be exactly controlled. Moreover, organic this films based on conjugated thiophene oligomer have potential for application to electronic and optoelectronic devices such as MISFETs(metal-insulator-semiconductor field-effect transistors) and LEDs(light-emitting diodes). However, there is little knowledge on electronic and structural properties of linear-conjugated oligothiophenes in solid states, compared with those in solutions. $\alpha$-sexithienyl($\alpha$-6T) thin-films were deposited by OMBD(Organic Molecular Beam Deposition) technique, where the $\alpha$-6T was synthesized and purified by the sublimation method. The $\alpha$-6T films were deposited under various conditions. The effects of deposition rate, substrate temperature, and vacuum pressure on the formation of these films have been studied. The molecules in the $\alpha$-6T film deposited at a low deposition rate under a high vacuum were aligned almost perpendicular to the substrate. The $\alpha$-6T films deposited at an elevated substrate temperature showed higher conductivity than the film deposited at room temperature. Electrical characterization of these films will be also executed by using four-point probe measurement technique.

  • PDF

Low-Voltage Organic Thin-Film-Transistors on $Al_2O_3$ Gate Insulators Layer Fabricated by ALD Processing Method (ALD 방식의 $Al_2O_3$ 게이트 절연막을 이용한 저 전압 유기 트랜지스터에 관한 연구)

  • Hyung, Gun-Woo;So, Byung-Soo;Lee, Jun-Young;Park, Il-Houng;Choe, Hak-Beom;Hwang, Jin-Ha;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.230-231
    • /
    • 2007
  • we fabricated a pentacene thin-film transistor with an $Al_2O_3$ layer of ALD as a gate insulator and obtained a device with better electrical characteristics at low operating voltages (below 16V). This device was found to have a field-effect mobility of $0.03cm^2/Vs$, a threshold voltage of -6V, an subthreshold slope of 1 V/decade, and an on/off current ratio of $10^6$.

  • PDF

Capacitance Properties of $Poly-\gamma-Benzyl\;_L-Glutamate$ in Organic Ultra Thin Films ($Poly-\gamma-Benzyl\;_L-Glutamate$ 유기초박막의 정전용량특성)

  • Kim, Byung-Geun;Kim, Chang-Bok;Kim, Young-Keun;Choi, Young-Il;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.147-149
    • /
    • 2002
  • Recently, the study on development of electrical and electronic device is done to set miniature, high degrees of integration and efficiency by using inorganic materials the study of Langmuir-Boldgett(LB) method that uses organic materials because of the limitation for the ultrasmall size. The structure of MIM(Metal-Insulator-Metal) device is Cr-Au/PBLG/ Al. the number of accumulated layers are 1, 3, 5, 7, 9. The I-V characteristic of the device is measured from 0[V] to 2[V] and the characteristic of current-time of the devices. We have investigated the capacitance because PBLG system have a accumulated layers the maximum value of measured current is increased as the number of accumulated layers are decreased. The capacitor properties of a thin film is better as the distance between electrodes is smaller. The results have shown the insulating materials and could control the conductivity by accumulated layers.

  • PDF

PACVD of Plasma Polymerized Organic Thin Films and Comparison of their Electrochemical Properties

  • I.S. Bae;S.H. Cho;Kim, M.C.;Y.H. Roh;J.H. Boo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.53-53
    • /
    • 2003
  • Plasma polymerized organic thin films were deposited on Si(100) glass and metal substrates using thiophene and ethylcyclohexane precursors by PECVD method. In order to compare electrochemical properties of the as-grown thin films, the effects of the RF plasma power in the range of 30~100 W. AFM showed that the polymer films with smooth surface and sharp interface could be grown under various deposition conditions. Impedance analyzer was utilized for the determination of I-V curve for leakage current density and C-V for dielectric constants, respectively. To obtain C-V curve, we used a MIM structure of metal(Al)-insulator(plasma polymerized thin film)-metal(Pt) structure. Al as the electrode was evaporated on the thiophene films that grew on Pt coated silicon substrates, and the dielectric constants of the as-grown films were then calculated from C- V data measured at 1MHz. From the electrical property measurements such as I-V and C-V characteristics, the minimum dielectric constant and the best leakage current of thiophene thin films were obtained to be about 3.22 and $1{\;}{\times}10^{-11}{\;}A/cm^2$. However, in case of ethylcyclohexane thin films, the minimum dielectric constant and the best leakage current were obtained to be about 3.11 and $5{\;}{\times}10^{-12}{\;}A/cm^2$.

  • PDF

Organo-Compatible Gate Dielectrics for High-performance Organic Field-effect Transistors (고성능 유기 전계효과 트랜지스터를 위한 유기친화 게이트 절연층)

  • Lee, Minjung;Lee, Seulyi;Yoo, Jaeseok;Jang, Mi;Yang, Hoichang
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.219-226
    • /
    • 2013
  • Organic semiconductor-based soft electronics has potential advantages for next-generation electronics and displays, which request mobile convenience, flexibility, light-weight, large area, etc. Organic field-effect transistors (OFET) are core elements for soft electronic applications, such as e-paper, e-book, smart card, RFID tag, photovoltaics, portable computer, sensor, memory, etc. An optimal multi-layered structure of organic semiconductor, insulator, and electrodes is required to achieve high-performance OFET. Since most organic semiconductors are self-assembled structures with weak van der Waals forces during film formation, their crystalline structures and orientation are significantly affected by environmental conditions, specifically, substrate properties of surface energy and roughness, changing the corresponding OFET. Organo-compatible insulators and surface treatments can induce the crystal structure and orientation of solution- or vacuum-processable organic semiconductors preferential to the charge-carrier transport in OFET.

Electrical Properties of CuPc FET Using Two-type Electrode Structure (두 가지 타입의 CuPC FET 전극 구조에서의 전기적 특성)

  • Lee, Won-Jae;Lee, Ho-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.988-991
    • /
    • 2011
  • We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different device structure as a bottom and top contact FET. Also, we used a $SiO_2$ as a gate insulator and analyzed using a current-voltage (I-V) characteristics of the bottom and top contact CuPc FET device. In order to discuss the channel formation, we were observed the capacitance-gate voltage(C-V) characteristics of the bottom and top contact CuPc FET device.

A Study on Electrical Characteristics of Organic Thin Film (유기박막의 전기적 특성 연구)

  • Choi Yong-Sung;Song Jin-Won;Moon Jong-Dae;Lee Kyung-Sup
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.953-959
    • /
    • 2006
  • Langmuir-Blodgett(LB)layers of Arachidic acid deposited by LB method were deposited onto slide glass as Y-type film. The structure of manufactured device is Au/arachidic acid/Al, the number of accumulated layers are $9{\sim}21$. Also, we then examined of the Metal-Insulator-Metal(MIM) device by means of I-V. The I-V characteristics of the device are measured from -3 to +3 V. The insulation property of a thin film is better as the distance between electrodes is larger.

Gate insulator Poly(4-vinylphenol) solvent concentration organic thin-film transistor characteristic effect (게이트 절연막 Poly(4-vinylphenol) 용제 비율에 따른 유기 박막 트랜지스터 특성 변화)

  • Jeun, Jun-Ho;Kim, Jung-Min;Lee, Dong-Hoon;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1700-1701
    • /
    • 2011
  • 본 논문에서는 게이트 절연막인 poly(4-vinylphenol) (PVP) 용제 농도 변화에 따른 유기 박막 트랜지스터를 제작하고 그 특성을 분석하였다. PVP는 propylene glycol monomethyl ether acetate(PGMEA) 와 poly melamine-co-formaldehyde (CLA)를 혼합하여 cross linked PVP를 만들어 사용하였다. Cross-liked PVP의 CLA 농도 비율을 각각 6 wt%, 9 wt%로 변화시켜 유기 박막 트랜지스터를 제작하고 소자의 전기적 특성을 분석 하였다.

  • PDF

Electrical Stress in High Permittivity TiO2 Gate Dielectric MOSFETs

  • Kim, Hyeon-Seag;S. A. Campbell;D. C. Gilmer
    • Electrical & Electronic Materials
    • /
    • v.11 no.10
    • /
    • pp.94-99
    • /
    • 1998
  • Suitable replacement materials for ultrathin SiO2 in deeply scaled MOSFETs such as lattice polarizable films, which have much higherpermittivities than SiO2, have bandgaps of only 3.0 to 4.0 eV. Due to these small bandgaps, the reliability of these films as a gate insulator is a serious concern. Ramped voltage, time dependent dielectric breakdown, and hot carrier effect measurements were done on 190 layers of TiO2 which were deposited through the metal-organic chemical vapor deposition of titanium tetrakis-isopropoxide (TTIP). Measurements of the high and low frequency capacitance indicate that virtually no interface state are created during constant current injection stress. The increase in leakage upon electrical stress suggests that uncharged, near-interface states may be created in the TiO2 film near the SiO2 interfacial layer that allow a tunneling current component at low bias.

  • PDF

유리 기판위에 제작된 PVP 게이트 절연막의 전기적 특성

  • Yang, Sin-Hyeok;Sin, Ik-Seop;Yu, Byeong-Cheol;Gong, Su-Cheol;Jang, Yeong-Cheol;Jang, Ho-Jeong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.218-220
    • /
    • 2007
  • 유기박막트랜지스터(organic thin film transistor, OTFT)의 게이트 절연막으로 PVP(poly-4-vinylphenol) 물질을 이용하여 MIM (metal-insulator-metal) 구조의 캐패시터 소자를 제작하였다. 유기 절연층의 형성은 ITO/Glass 기판 위에 PVP를 용질로, PGMEA(propylene glycol monomethyl ether acetate)를 용매로 사용하였다. 또한 열경화성 수지인 poly(melamine-co-formaldehyde)를 사용하여 cross-linked PVP 절연막을 합성하여 스핀코팅법으로 소자를 형성하였다. 제작된 소자에 대해 절연막 두께에 따른 전기적 특성을 조사한 결과 300 nm 에서 500 nm로 두께가 증가할수록 누설전류는 10.69 nA 에서 0.1 nA 로 크게 감소하였다. 또한 캐패시터 소자의 정전용량은 300 nm 의 두께에서 1.05 nF 으로 500 nm 의 두께에서의 0.65 nF 과 비교하여 보다 양호한 특성이 나타났다.

  • PDF