• Title/Summary/Keyword: organic fluorescent materials

Search Result 103, Processing Time 0.022 seconds

The study on the characteristics of organic light emitting devices using Ir (Ir 착화합물을 이용한 유기발광소자의 특성연구)

  • 김준호;표상우;정래영;하윤경;김영관;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.214-217
    • /
    • 2002
  • The internal quantum efficiency of organic light emitting devices(OLEDs) using fluorescent organic materials is limited within 25% because of the triplet excitons which can hardly emit light. So there has been considerable interest in finding ways to obtain light emission from triplet excitons. One approach has been to add phosphorescent compounds to one of the layers in OLEDs. Then triplet excitons can transfer to these phosphorescent molecules and emit light. In this study, multilayer OLEDs with phosphorescent emitter, Iridium complexes were prepared. The devices with a structure of ITO/TPD/Ir complex doped in the host material/Alq3/Li:Al/Al were fabricated, and its electrical and optical characteristics were studied. Using various Ir complexes and the host materials, we fabricated several devices and investigated the device characteristics.

  • PDF

Impedance Characteristics of Blue Fluorescent OLED According to Elapsed Time (경과 시간에 따른 청색 형광 OLED의 Impedance 특성)

  • Kong, Do-Hoon;Yang, Jae-Woong;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.405-410
    • /
    • 2017
  • In order to study current-voltage-luminance and impedance characteristics according to elapsed time, a blue fluorescent OLED was fabricated. The current density and luminance gradually decreased in accordance with elapsed time and did not emit light after 480 hours, and the threshold voltage increased as time elapsed. The Cole-Cole plot was a semicircular shape of a very large size at 2 V of the applied voltage below the threshold voltage, and the maximum value of the real number impedance did not change greatly from 9314.5 to $9902.2{\Omega}$ as time elapsed. Applied voltages 4, 6, and 8 V above the threshold voltage showed a large change in the real number impedance value at the semicircle end to 9,678.2, 9,826, $9,535.4{\Omega}$ according to the elapsed time from 2,222.5, 183.7, $48.2{\Omega}$ immediately after fabricating the device. By increasing the applied voltage beyond the threshold voltage just after device fabrication, the energy difference between the device and the organic layer was overcome and the current flowed, the maximum value of the real number impedance sharply decreased. As time passed, current did not flow through the element even at high applied voltage due to degradation of the element, and even when the applied voltage was higher than the threshold voltage, it showed an impedance value such as applied voltage equal to or less than the threshold voltage. As a result, it can be learned that the change in the impedance with elapsed time reflects the characteristics due to the degradation of the OLED and can predict the characteristics and lifetime of the OLED.

Combinatorial Synthesis of Organic Luminescent Materials (유기발광재료의 조합합성)

  • Kim, Chul-Bae;Jo, Hyun-Jong;Park, Kwang-Yong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.357-365
    • /
    • 2010
  • Combinatorial synthesis, which has been adopted as an efficient method for deriving a leading compound in pharmaceutical chemistry, is recently being applied in various fields along with the rapid development of analysis and examination technology. It is especially attracting much attention as an efficient strategy to secure various potent compounds rapidly in the areas of developing new materials where the relationship between the chemical structure and the property is not revealed. Several reports and reviews have already been published for the combinatorial chemistry and combinatorial synthesis. This report briefly introduces trends in the combinatorial development of new materials and discusses the cases of developing organic luminescent materials.

Recent Progress on Organic Emitters for Organic Light Emitting Diode Lightings (유기발광다이오드 조명용 유기발광체의 최근 동향)

  • Jung, Hyocheol;Lee, Hayoon;Kang, Seokwoo;An, Byeong-Kwan;Yook, Kyoung Soo;Park, Young-Il;Kim, Beomjin;Park, Jongwook
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.455-466
    • /
    • 2016
  • Organic light-emitting diode (OLED) has drawn a lot of attention in academic and industrial fields, which has been successfully commercialized in mobile phones and TV's. In the field of lighting, unlike the existing incandescent or fluorescent lighting, OLED has distinctive qualities such as surface lighting-emission, large-area, lightweight, ultrathin, flexibility in addition to low energy use. This article introduces prominent fluorescent, phosphorescent, and luminescent materials applied to white OLED (WOLED). The understanding and systematic classification of previously studied substances are expected to be greatly helpful for the development of new luminous materials in future.

Development of Fluorescent or Phosphorescent Materials for Non-Dopant Red Organic Light-Emitting Diodes

  • Chen, Chin-Ti
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1133-1137
    • /
    • 2005
  • In this paper, a renovated approach in the fabrication of red organic light-emitting diodes (OLEDs) is described. The hard-to-control doping process required for dopant-based red OLEDs can be avoided due to the novel red fluorophores that are not concentration quenching in solid state. Doping is in general a must for phosphorescence OLEDs because of the triplet-triplet annihilation, a common problem for phosphorophore dopants. However, we have recently found that extraordinary red iridium complex showing relatively short emission lifetime render the non-doped phosphorescence red OLED possible.

  • PDF

Low driving voltage and high stability organic light-emitting diodes with rhenium oxide-doped hole transporting layer

  • Leem, Dong-Seok;Park, Hyung-Dol;Kang, Jae-Wook;Lee, Se-Hyung;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1650-1653
    • /
    • 2007
  • We demonstrate fluorescent green organic lightemitting diodes employing a rhenium oxide ($ReO_3$)-doped N,N-diphenyl-N,N'-bis(1,1'-biphenyl)-4,4'-diamine (NPB) hole transporting layer (HTL). The devices exhibit significantly reduced driving voltages as well as prolonged lifetime. Details of $ReO_3$ doping effects are described in terms of charge transfer complex and stabilization of HTL morphology.

  • PDF

Sensory Materials for DMNB

  • Kim, Jin Soo
    • Journal of Integrative Natural Science
    • /
    • v.9 no.2
    • /
    • pp.81-85
    • /
    • 2016
  • Detection of DMNB by chemo sensors has been proved difficult because of their high lying LUMO level. Recently reported 4 different types of sensory materials for detection of DMNB were discussed. The focus of this review mainly lied on the sensitivity and feasibility for field use. Different strategies and approaches from different platforms for sensing DMNB is studied.

Frequency Response Characteristics of Fluorescent OLED with Alternating Current Driving Method (교류구동방식에 의한 형광 OLED의 주파수 응답 특성)

  • Seo, Jung-Hyun;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.40-46
    • /
    • 2019
  • To study the frequency response characteristics of alternating-current-driven organic light-emitting diodes (OLEDs), we fabricated blue-fluorescent OLEDs and analyzed their electroluminescent characteristics according to the alternating current voltage and frequency. The luminance-frequency characteristics of alternating-current-driven OLED was similar to that of a low-pass filter, and the luminance of high-voltage OLED decreased at higher frequency than low-voltage OLED. The luminance characteristics of the OLED according to the frequency is due to the capacitive reactance in the OLED, generated during the alternating current driving. The frequency response characteristics of the OLED according to the voltage is due to the decrease in internal resistance of the organic layer. In addition, the negative voltage component of the alternating current did not affect the frequency response of the OLED. Therefore, the electroluminescent characteristics of OLED with an alternating current power of 60 Hz are not influenced by the frequency.

Efficient White Organic Light-Emitting Diodes with Novel Fluorescent and Phosphorescent Materials (새로운 형광 및 인광 물질을 이용한 효율적인 백색 유기 전기 발광소자)

  • Seo, Ji-Hoon;Kim, Jun-Ho;Lee, Kum-Hee;Yoon, Seung-Soo;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.493-494
    • /
    • 2006
  • We have demonstrated highly efficient WOLED with two separated emissive layers using a blue fluorescent dye and a red phosphorescent dye. we also obtain stable $CIE_{x,y}$ coordinates with two-layered WOLEDs. The device structure was ITO/2-TNATA/NPB/two separated emissive layers/Bphen/Liq/Al. The maximum luminous efficiency of the device was 11.6 cd/A at $20\;mA/cm^2$ and $CIE_{x,y}$ coordinates varied from (x = 0.33, y = 0.37) at 6V to (x = 0.28, y = 0.35) at 14V.

  • PDF