Combinatorial Synthesis of Organic Luminescent Materials

유기발광재료의 조합합성

  • Kim, Chul-Bae (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Jo, Hyun-Jong (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Park, Kwang-Yong (School of Chemical Engineering and Materials Science, Chung-Ang University)
  • 김철배 (중앙대학교 화학신소재공학부) ;
  • 조현종 (중앙대학교 화학신소재공학부) ;
  • 박광용 (중앙대학교 화학신소재공학부)
  • Received : 2010.06.14
  • Published : 2010.08.10

Abstract

Combinatorial synthesis, which has been adopted as an efficient method for deriving a leading compound in pharmaceutical chemistry, is recently being applied in various fields along with the rapid development of analysis and examination technology. It is especially attracting much attention as an efficient strategy to secure various potent compounds rapidly in the areas of developing new materials where the relationship between the chemical structure and the property is not revealed. Several reports and reviews have already been published for the combinatorial chemistry and combinatorial synthesis. This report briefly introduces trends in the combinatorial development of new materials and discusses the cases of developing organic luminescent materials.

신약개발 과정에서 선도물질을 도출하기 위한 유용한 방법으로 적용되어온 조합합성은 최근 분석과 검사 기술의 빠른 발전과 더불어 다양한 분야에서 응용되고 있다. 특히 분자구조와 특성 간의 상관관계를 예측하기 어려운 신물질 개발 분야에서 다양한 후보 물질들을 빠른 시간 내에 확보하기 위한 효율적인 전략으로 주목받고 있다. 그 동안 조합화학 및 조합합성 기법에 관하여 많은 수의 보고서와 총설들이 발표되었다. 본 총설에서는 조합합성을 이용한 신소재 개발 동향을 간략히 소개하고, 이를 응용한 유기발광재료 개발 사례들을 논의하고자 한다.

Keywords

References

  1. G. Jung, Combinatorial Chemistry-Synthesis, Analysis, Screening, Wiley-VCH, Weinheim (1999).
  2. R. E. Dolle, J. Comb. Chem., 6, 623 (2004). https://doi.org/10.1021/cc0499082
  3. R. E. Dolle, J. Comb. Chem., 5, 693 (2003). https://doi.org/10.1021/cc0340224
  4. K. C. Nicolaou, R. Hanko, and W. Hartwig, Handbook of Combinatorial Chemistry: Drug, Catalyst, Materials, Wiley-VCH, Weinheim (2002).
  5. I. Tacheuchi, J. Lauterbach, and M. J. Fasolka, Materialstoday, 18 (2005).
  6. W. Maier, K. Stöwe, and S. Sieg, Angew. Chem., Int. Ed., 46, 6016 (2007). https://doi.org/10.1002/anie.200603675
  7. Combinatorial Chemistry: Synthesis and Application, ed. S. R. Wilson and A. W. Czarnik, John Wiley & Sons, INC, New York 25 (1996).
  8. R. B. Marrifield, J. Am. Chem. Soc., 85, 2149 (1963). https://doi.org/10.1021/ja00897a025
  9. R. E. Dolle, B. Le Bourdonnec, G. A. Morales, K. J. Moriarty, and J. M. Salvino, J. Comb. Chem., 8, 597 (2006). https://doi.org/10.1021/cc060095m
  10. R. E. Dolle, J. Comb. Chem., 7, 739 (2005). https://doi.org/10.1021/cc050082t
  11. R. E. Dolle, J. Comb. Chem., 6, 623 (2004). https://doi.org/10.1021/cc0499082
  12. P. H. Toy and K. D. Janda, Acc. Chem. Res., 33, 546 (2000). https://doi.org/10.1021/ar990140h
  13. C. W. Harwig, D. J. Gravert, and K. D. Janda, Chemtracts, 12, 1 (1999).
  14. D. J. Gravert and K. D. Janda, Chem. Rev., 97, 2110 (1997).
  15. W. Miao and T. H. Chan, Acc. Chem. Res., 39, 897 (2006). https://doi.org/10.1021/ar030252f
  16. J. Thiem, A. Steinmann, J. Thimm, and N. Wollik, Curr. Org. Chem., 12, 1010 (2008). https://doi.org/10.2174/138527208785161213
  17. P. H. Seeberger and D. B. Werz, Nature, 446, 1046 (2007). https://doi.org/10.1038/nature05819
  18. C.-B. Kim, C.-H. Cho, C. K. Kim, and K. Park, J. Comb. Chem., 9, 1157 (2007). https://doi.org/10.1021/cc700112x
  19. W.-M. Dai and J. Shi, Comb. Chem. High Throughput Screening, 10, 837 (2007). https://doi.org/10.2174/138620707783220338
  20. A. D. Piscopio and J. E. Robinson, Curr. Opin. Chem. Biol., 8, 245 (2004). https://doi.org/10.1016/j.cbpa.2004.04.001
  21. B. J. Backes and J. A. Ellman, Curr. Opin. Chem. Biol., 1, 86, (1997). https://doi.org/10.1016/S1367-5931(97)80113-5
  22. J. A. Ellman, Acc. Chem. Res., 29, 132 (1996). https://doi.org/10.1021/ar950190w
  23. P. J. H. Scott and P. G. Steel, Eur. J. Org. Chem., 2251 (2006).
  24. C. Gil and S. Brase, Curr. Opin. Chem. Biol., 8, 230 (2004). https://doi.org/10.1016/j.cbpa.2004.04.004
  25. C. W. Phoon and M. M. Sim, Curr. Org. Chem., 6, 937 (2002). https://doi.org/10.2174/1385272023373734
  26. S. Brase and S. Dahmen, Chem. Eur. J., 6, 1899 (2000). https://doi.org/10.1002/1521-3765(20000602)6:11<1899::AID-CHEM1899>3.0.CO;2-M
  27. A. Corma and J. M. Serra, Catal. Today, 3, 107 (2005).
  28. D. J. Jones, V. C. Gibson, S. M. Green, and P. J. Maddox, Chem. Commun., 1038 (2002).
  29. D. J. Jones, V. C. Gibson, S. M. Green, P. J. Maddox, A. J. P. White, and D. J. Williams, J. Am. Chem. Soc., 127, 11037 (2005). https://doi.org/10.1021/ja0518171
  30. J. K. Park, K. J. Choi, K. N. Kim, and C. H. Kim, Appl. Phys. Lett., 87, 031108 (2005) https://doi.org/10.1063/1.1984103
  31. K. S. Sohn, D. H. Park, S. H. Cho, B. I. Kim, and S. I. Woo, J. Comb. Chem., 8, 44 (2006). https://doi.org/10.1021/cc050101z
  32. V. Z. Mordkovich, H. Hayashi, M. Haemori, T. Fukumura, and M. Kawasaki, Adv. Funct. Mater., 223, 144 (2003).
  33. H. M. Christen, I. Ohkubo, C. M. Rouleau, G. E. Jellison, Jr., A. A. Puretzky, D. B. Geohegan, and D. H. Lowndes, Meas. Sci. Technol., 16, 21 (2005). https://doi.org/10.1088/0957-0233/16/1/004
  34. A. Ludwig, N. Zotov, A. Savan, and S. Groudeva-Zotova, Appl. Surf. Sci., 252, 2518 (2006). https://doi.org/10.1016/j.apsusc.2005.04.058
  35. I. Takeuchi, O. O. Famodu, J. C. Read, M. A. Aronova, K.-S. Chang, C. Craciunescu, S. E. Lofland, M. Wuttig, F. C. Wellstood, L. Knauss, and A. Orozco, Nat. mater., 2, 180 (2003). https://doi.org/10.1038/nmat829
  36. T. Kobayashi, A. Ueda, Y. Yamada, and H. Shiotama, Appl. Surf. Sci., 223, 102 (2004). https://doi.org/10.1016/S0169-4332(03)00905-X
  37. S. D. Lindell, L. C. Pattenden, and J. Shannon, Bioorg. Med. Chem., 17, 4035 (2009). https://doi.org/10.1016/j.bmc.2009.03.027
  38. K. Kumar and H. Waldmann, Angew. Chem., Int. Ed., 48, 3224 (2009). https://doi.org/10.1002/anie.200803437
  39. J. P. Nandy, M. Prakesch, S. Khadem, P. T. Reddy, U. Sharma, and P. Arya, Chem. Rev., 109, 1999 (2009). https://doi.org/10.1021/cr800188v
  40. W. L. Jorgensen, Acc. Chem. Res., 42, 724 (2009). https://doi.org/10.1021/ar800236t
  41. K. Sada, K. Yoshikawa, and M. Miyata, Chem. Commun., 1763 (1998).
  42. N. S. Finney, Curr. Opin. Chem. Biol., 10, 238 (2006). https://doi.org/10.1016/j.cbpa.2006.04.025
  43. V. Ljosa and A. E. Carpenter, Trends Biotechnol., 26, 527 (2008). https://doi.org/10.1016/j.tibtech.2008.06.008
  44. M.-S. Schiedel, A. B. Christoph, and P. Bauerle, Angew. Chem., Int. Ed., 40, 4677 (2001). https://doi.org/10.1002/1521-3773(20011217)40:24<4677::AID-ANIE4677>3.0.CO;2-U
  45. R. A. Potyrailo, Angew. Chem., Int. Ed., 45, 702 (2006). https://doi.org/10.1002/anie.200500828
  46. V. M. Mirsky, V. Kulikov, Q. Hao, and O. S. Wolfbeis, Macromol. Rapid Commun., 25, 253 (2004). https://doi.org/10.1002/marc.200300210
  47. B. J. Chisholm and D. C. Webster, J. Coat. Technol. Res., 4, 1 (2007). https://doi.org/10.1007/s11998-007-9000-9
  48. E. M. Nolan and S. L. Lippard, Acc. Chem. Res., 42, 193 (2009). https://doi.org/10.1021/ar8001409
  49. M. S. T. Gonçalves, Chem. Rev., 109, 190 (2009). https://doi.org/10.1021/cr0783840
  50. J. Jose and K. Burgess, Tetrahedron, 62, 11021 (2006). https://doi.org/10.1016/j.tet.2006.08.056
  51. F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, Nanotechnol., 17, R1 (2006). https://doi.org/10.1088/0957-4484/17/1/R01
  52. J. A. S. Barber and C. S. Parkin, Crop Protection, 22, 15 (2003). https://doi.org/10.1016/S0261-2194(02)00061-3
  53. M. S. Field, R. G. Wilhelm, J. F. Quinlan, and T. J. Aley, Environ. Monit. Assess., 28, 75 (1995).
  54. P. H. P. D'Alpino, J. C. Pereira, N. R. Svizero, F. A. Rueggeberg, and D. H. Pashley, J. Dent., 34, 623 (2006).
  55. J. Kalinowski, Opt. Mater., 30, 792 (2008). https://doi.org/10.1016/j.optmat.2007.02.041
  56. B. Geffroy, P. Le Roy, and C. Prat, Polym. Int., 55, 572 (2006). https://doi.org/10.1002/pi.1974
  57. J. G. C. Veinot and T. J. Marks, Acc. Chem. Res., 38, 632 (2005). https://doi.org/10.1021/ar030210r
  58. K. Sivakumar, F. Xie, B. M. Cash, S. Long, H. N. Barnhill, and Q. Wang, Org. Lett., 6, 4603 (2004). https://doi.org/10.1021/ol047955x
  59. A. Song, J. Zhang, and K. S. Lam, J. Comb. Chem., 6, 112 (2004). https://doi.org/10.1021/cc0340022
  60. F. Xie, K. Sivakumar, Q. Zeng, M. A. Bruckman, B. Hodges, and Q. Wang, Tetrahedron, 64, 2906 (2008). https://doi.org/10.1016/j.tet.2008.01.080
  61. Q. Zhu, H.-S. Yoon, P. B. Parikh, B. Puja B., Y.-T Chang, and S. Q. Yao, Tetrahedron Lett., 43, 5083 (2002). https://doi.org/10.1016/S0040-4039(02)00999-1
  62. J. Min, J. W. Lee, Y.-H. Ahn, and Y.-T Chang, J. Comb. Chem., 9, 1079 (2007). https://doi.org/10.1021/cc0700546
  63. G. R. Rosania, J. W. Lee, L. Ding, H.-S. Yoon, and Y.-T. Chang, J. Am. Chem. Soc., 125, 1130 (2003). https://doi.org/10.1021/ja027587x
  64. Q. Li, J.-S. Lee, C. Ha, C. B. Park, G. Yang, W. B. Gan, and Y.-T. Chang, Angew. Chem., Int. Ed., 43, 6331 (2004). https://doi.org/10.1002/anie.200461600
  65. Y.-H. Ahn, J.-S. Lee, and Y.-T. Chang, J. Am. Chem. Soc., 129, 4510 (2007). https://doi.org/10.1021/ja068230m
  66. E. Kim, M. Koh, J. Ryu, and S. B. Park, J. Am. Chem. Soc., 130, 12206 (2008). https://doi.org/10.1021/ja8020268
  67. M. Thelakkat, C. Schmitz, C. Neuber, and H.-W. Schmidt, Macromol. Rapid. Commun., 25, 204 (2004). https://doi.org/10.1002/marc.200300254
  68. S. Anderson, Chem. Eur. J., 7, 4706 (2001). https://doi.org/10.1002/1521-3765(20011105)7:21<4706::AID-CHEM4706>3.0.CO;2-H
  69. C. A. Briehn, M.-S. Schiedel, E. M. Bonsen, W. Schuhmann, and P. Bäuerle, Angew. Chem., Int. Ed., 40, 4680 (2001). https://doi.org/10.1002/1521-3773(20011217)40:24<4680::AID-ANIE4680>3.0.CO;2-X
  70. A. Momotake and T. Arai, J. Photochem. Photobiol. A: Photochem. Reviews, 5, 1 (2004). https://doi.org/10.1016/j.jphotochemrev.2004.01.001
  71. M. Imai and T. Arai, Tetrahedron Lett., 43, 5265 (2002). https://doi.org/10.1016/S0040-4039(02)01063-8
  72. H. Meier, Angew. Chem., Int. Ed., 31, 1399 (1992). https://doi.org/10.1002/anie.199213993
  73. L. Feringa, W. F. Jager, and B. de Lange, Tetrahedron, 49, 8267 (1993). https://doi.org/10.1016/S0040-4020(01)81913-X
  74. S.-I. Um, J.-K. Lee, Y. Kang, and D.-J. Baek, Dyes Pigm., 70, 84 (2006). https://doi.org/10.1016/j.dyepig.2005.04.005
  75. S. Sengupta, Tetrahedron Lett., 44, 307 (2003). https://doi.org/10.1016/S0040-4039(02)02519-4
  76. Q. Xu, H. Z. Chen, and M. Wang, Mater. Chem. Phys., 87, 446 (2004). https://doi.org/10.1016/j.matchemphys.2004.06.029
  77. C. Zhan, Z. Cheng, J. Zheng, W. Zhang, Y. Xi, and J. Qin, J. Appl. Polym. Sci., 85, 2718 (2002). https://doi.org/10.1002/app.10692
  78. P. L. Burn, S.-C. Lo, and I. D. W. Samuel, Adv. Mater., 19, 1675 (2007). https://doi.org/10.1002/adma.200601592
  79. A. Momotake and T. Arai, J. Photochem. Photobiol., C, 5, 1 (2004). https://doi.org/10.1016/j.jphotochemrev.2004.01.001
  80. J. P. J. Markham, E. B. Namdas, T. D. Anthopoulos, I. D. W. Samuel, G. J. Richards, and P. L. Burn, Appl. Phys. Lett., 85, 1463 (2004). https://doi.org/10.1063/1.1784521
  81. G. Walter, R. Liebl, and E. Von Angerer, Bioorg. Med. Chem., 14, 4659 (2004). https://doi.org/10.1016/j.bmcl.2004.06.098
  82. D. Chavez, H. B. Chai, T. E. Chagwedera, Q. Gao, N. R. Farnsworth, G. A. Cordell, J. M. Pezzuto, and A. D. Kinghorn, Tetrahedron Lett., 42, 3685 (2001). https://doi.org/10.1016/S0040-4039(01)00560-3
  83. I. Iliya, Z. Ali, T. Tanaka, M. Iinuma, M. Furusawa, K.-I. Nakaya, J. Murata, D. I. Darnaedi, N. Matsuura, and M. Ubukata, Phytochemistry, 62, 601 (2003). https://doi.org/10.1016/S0031-9422(02)00670-2
  84. K.-S. Huang, R.-L. Li, Y.-H. Wang, and M. Lin, Planta. Med., 67, 61 (2001). https://doi.org/10.1055/s-2001-10875
  85. J. F. Savouret and M. Quesne, Biomed. Pharmacother., 56, 84 (2002). https://doi.org/10.1016/S0753-3322(01)00158-5
  86. R. Williard, V. Jammalamadaka, D. Zava, C. C. A. Hunt, P. J. Kushner, and T. S. Scanlan, Chem. Biol., 2, 45 (1995). https://doi.org/10.1016/1074-5521(95)90079-9
  87. C.-H. Cho and K. Park, Bull. Korean Chem. Soc., 28, 1159 (2007). https://doi.org/10.5012/bkcs.2007.28.7.1159
  88. C.-H. Cho, C.-B. Kim, and K. Park, J. Comb. Chem., 12, 45 (2010). https://doi.org/10.1021/cc900099g
  89. S. Tu, S. Wu, S. Yan, W. Hao, X. Zhang, X. Cao, Z. Han, B. Jiang, F. Shi, M. Xia, and J. Zhou, J. Comb. Chem., 11, 239 (2009). https://doi.org/10.1021/cc800094m
  90. M. S. Lowry, W. R. Hudson, R. A. Pascal, Jr., and S. Bernhard, J. Am. Chem. Soc., 126, 14129 (2004). https://doi.org/10.1021/ja047156+
  91. N.-M. Hsu and W.-R. Li, Angew. Chem., Int. Ed., 45, 4138 (2006). https://doi.org/10.1002/anie.200600004
  92. N.-M. Hsu, C.-Y. Li, C.-M. Yang, T.-S. Lin, B.-H. Hu, Y. S. Tingare, W.-C. Chang, G. K. Srivastava, and W.-R. Li, J. Comb. Chem., 11, 943 (2009). https://doi.org/10.1021/cc900104j
  93. O. Lavastre, I. Illitchev, G. Jegou, and P. H. Dixneuf, J. Am. Chem. Soc., 124, 5278 (2002). https://doi.org/10.1021/ja025764o
  94. J. Gao, C. Strässler, D. Tahmassebi, and E. T. Kool, J. Am. Chem. Soc., 124, 11590 (2002). https://doi.org/10.1021/ja027197a