DOI QR코드

DOI QR Code

Recent Progress on Organic Emitters for Organic Light Emitting Diode Lightings

유기발광다이오드 조명용 유기발광체의 최근 동향

  • Jung, Hyocheol (Department of Chemical Engineering, Kyung Hee University) ;
  • Lee, Hayoon (Department of Chemical Engineering, Kyung Hee University) ;
  • Kang, Seokwoo (Department of Chemical Engineering, Kyung Hee University) ;
  • An, Byeong-Kwan (Department of Chemistry, Catholic University of Korea) ;
  • Yook, Kyoung Soo (Sungkyunkwan University, Department of Chemical Engineering) ;
  • Park, Young-Il (Korea Research Institute Chemical Technology, Research Center for Green Fine Chemicals) ;
  • Kim, Beomjin (Korea Research Institute Chemical Technology, Research Center for Green Fine Chemicals) ;
  • Park, Jongwook (Department of Chemical Engineering, Kyung Hee University)
  • 정효철 (경희대학교 화학공학과) ;
  • 이하윤 (경희대학교 화학공학과) ;
  • 강석우 (경희대학교 화학공학과) ;
  • 안병관 (가톨릭대학교 화학과) ;
  • 육경수 (성균관대학교 화학공학과) ;
  • 박영일 (한국화학연구원 그린정밀화학센터) ;
  • 김범진 (한국화학연구원 그린정밀화학센터) ;
  • 박종욱 (경희대학교 화학공학과)
  • Received : 2016.08.29
  • Accepted : 2016.09.10
  • Published : 2016.10.10

Abstract

Organic light-emitting diode (OLED) has drawn a lot of attention in academic and industrial fields, which has been successfully commercialized in mobile phones and TV's. In the field of lighting, unlike the existing incandescent or fluorescent lighting, OLED has distinctive qualities such as surface lighting-emission, large-area, lightweight, ultrathin, flexibility in addition to low energy use. This article introduces prominent fluorescent, phosphorescent, and luminescent materials applied to white OLED (WOLED). The understanding and systematic classification of previously studied substances are expected to be greatly helpful for the development of new luminous materials in future.

유기 발광 다이오드(OLED)는 학문 및 산업분야에서 많은 관심을 받고 있다. OLED는 이미 휴대폰과 TV분야에서 상업화에 성공하고 있으며, 조명분야에서는 기존에 사용되어왔던 백열등, 형광등과는 다르게 면발광, 대면적, 초경량, 초박형, 유연성의 특징은 물론 낮은 에너지 사용 등의 차별성을 가지고 있기 때문에 최근 많은 관심을 받고 있다. 본 논문에서는 white organic light-emitting diode (WOLED)에 적용되는 대표적인 형광 및 인광 발광 재료들을 소개한다. 이렇게 선행 연구된 물질들을 이해하고 체계적으로 분류하는 것은 앞으로 새로운 발광 재료를 연구, 개발하는데 큰 도움을 줄 수 있을 것으로 기대된다.

Keywords

References

  1. C. W. Tang and S. A. Vanslyke, Organic electroluminescent diodes, Appl. Phys. Lett., 51, 913-915 (1987). https://doi.org/10.1063/1.98799
  2. Z. Shen, P. E. Burrows, V. Bulovic, S. R. Forrest, and M. E. Thompson, Three-color, tunable, organic light-emitting devices, Science, 276, 2009-2011 (1997). https://doi.org/10.1126/science.276.5321.2009
  3. S. R. Forrest, The road to high efficiency organic light emitting devices, Org. Electron., 4, 45-48 (2003). https://doi.org/10.1016/j.orgel.2003.08.014
  4. A. R. Duggal, J. J. Shiang, C. M. Heller, and D. F. Foust, Organic light-emitting devices for illumination quality white light, Appl. Phys. Lett., 80, 3470-3472 (2002). https://doi.org/10.1063/1.1478786
  5. B. W. D'Andrade and S. R. Forrest, White organic light-emitting devices for solid-state lighting, Adv. Mater., 16, 1585-1595 (2004). https://doi.org/10.1002/adma.200400684
  6. C. P. Wang, M. H. Wu, H. W. Lin, H. C. Pan, B. H. Liu, and J. H. Jou, High-efficiency flexible white organic light-emitting diodes, J. Mater. Chem., 20, 6626-6629 (2010). https://doi.org/10.1039/c0jm01348j
  7. Y. L. Chang, Y. Song, Z. Wang, M. G. Helander, J. Qiu, L. Chai, Z. Liu, G. D. Scholes, and Z. Lu, Highly efficient warm white organic light-emitting diodes by triplet exciton conversion, Adv. Funct. Mater., 23, 705-712 (2012).
  8. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, White organic light-emitting diodes with fluorescent tube efficiency, Nature, 459, 234-238 (2009). https://doi.org/10.1038/nature08003
  9. M. Thomschke, S. Reineke, B. Lussem, and K. Leo, Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films, Nano Lett., 12, 424-428 (2012). https://doi.org/10.1021/nl203743p
  10. J. B. Birks, Photophysics of Aromatic Compounds, Wiley, New York (1970).
  11. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, J. Appl. Phys., 90, 5048-5051 (2001). https://doi.org/10.1063/1.1409582
  12. R. J. Holmes, S. R. Forrest, Y. -J. Tung. Y, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, Blue organic electrophosphorescence using exothermic host-guest energy transfer, Appl. Phys. Lett., 82, 2422-2424 (2003). https://doi.org/10.1063/1.1568146
  13. S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki, and F. Sato, Confinement of triplet energy on phosphorescent molecules for highly efficient organic blue-light emitting devices, Appl. Phys. Lett., 83, 569-571 (2003). https://doi.org/10.1063/1.1594834
  14. G. T. Lei, L. D. Wang, L. Duan, J. H. Wang, and Y. Qiu, Highly efficient blue electrophosphorescent devices with a novel host material, Synth. Met., 144, 249-252 (2004). https://doi.org/10.1016/j.synthmet.2004.03.010
  15. D. R. Whang, Y. You, S. H. Kim, W. I. Jeong, Y. S. Park, J. J. Kim, and S. Y. Park, A highly efficient wide-band-gap host material for blue electrophosphorescent light-emitting devices, Appl. Phys. Lett., 91, 233501-233501-3 (2007). https://doi.org/10.1063/1.2821116
  16. H. Fukagawa, W. Watanabe, T. Tsuzuki, and S. Tokito, Highly efficient, deep-blue phosphorescent organic light emitting diodes with a double-emitting layer structure, Appl. Phys. Lett., 93, 133312-133312-3 (2008). https://doi.org/10.1063/1.2996572
  17. Y. Agata, H. Shimizu, and J. Kido, Syntheses and properties of novel quarterphenylene-based materials for blue organic light-emitting devices, Chem. Lett., 36, 316-317 (2007). https://doi.org/10.1246/cl.2007.316
  18. L. S. Cui, Y. Liu, Q. Li, Z. Q. Jiang, and L. S. Liao, A rational molecular design on choosing suitable spacer for better host materials in highly efficient blue and white phosphorescent organic light-emitting diodes, Org. Electron., 15, 1368-1377 (2014). https://doi.org/10.1016/j.orgel.2014.03.028
  19. T. Tsuboi, H. Murayama, S. J. Yeh, M. F. Wu, and C. T. Chen, Photoluminescence characteristics of blue phosphorescent $Ir^{3+}$ compounds FIrpic and FIrN4 doped in mCP and SimCP, Opt. Mater., 31, 366-371 (2008). https://doi.org/10.1016/j.optmat.2008.05.010
  20. T. Tsuboi, S. W. Liu, M. F. Wu, and C. T. Chen, Spectroscopic and electrical characteristics of highly efficient tetraphenylsilane-carbazole organic compound as host material for blue organic light emitting diodes, Org. Electron., 10, 1372-1377 (2009). https://doi.org/10.1016/j.orgel.2009.07.020
  21. M. H. Tsai, H. W. Lin, H. C. Su, T. H. Ke, C. C. Wu, F. C. Fang, Y. L. Liao, K. T. Wong, and C. I. Wu, Highly efficient organic blue electrophosphorescent devices based on 3,6-bis(triphenylsilyl) carbazole as the host material, Adv. Mater., 18, 1216-1220 (2006). https://doi.org/10.1002/adma.200502283
  22. M. H. Tsai, T. H. Ke, H. W. Lin, C. C. Wu, S. F. Chiu, F. C. Fang, Y. L. Liao, K. T. Wong, Y. H. Chen, and C. I. Wu, Triphenylsilyl- and trityl-substituted carbazole-based host materials for blue electrophosphorescence, ACS Appl. Mater. Interfaces, 1, 567-574 (2009). https://doi.org/10.1021/am800124q
  23. S. H. Kim, J. Jang, S. J. Lee, and J. Y. Lee, Deep blue phosphorescent organic light-emitting diodes using a Si based wide bandgap host and an Ir dopant with electron withdrawing substituents, Thin Solid Films, 517, 722-726 (2008). https://doi.org/10.1016/j.tsf.2008.08.156
  24. S. O. Jeon, K. S. Yook, C. W. Joo, and J. Y. Lee, Phenylcarbazole-based phosphine oxide host materials for high efficiency in deep blue phosphorescent organic light-emitting diodes, Adv. Funct. Mater., 19, 3644-3649 (2009). https://doi.org/10.1002/adfm.200901274
  25. H. S. Son, C. W. Seo, and J. Y. Lee, Correlation of the substitution position of diphenylphosphine oxide on phenylcarbazole and device performances of blue phosphorescent organic lightemitting diodes, J. Mater. Chem., 21, 5638-5644 (2011). https://doi.org/10.1039/c0jm03427d
  26. S. O. Jeon, S. E. Jang, H. S. Son, and J. Y. Lee, External quantum efficiency above 20% in deep blue phosphorescent organic light-emitting diodes, Adv. Mater., 23, 1436-1441 (2011). https://doi.org/10.1002/adma.201004372
  27. S. H. Jeong and J. Y. Lee, Dibenzothiophene derivatives as host materials for high efficiency in deep blue phosphorescent organic light emitting diodes, J. Mater. Chem., 21, 14604-14609 (2011). https://doi.org/10.1039/c1jm12421h
  28. S. H. Jeong, C. W. Seo, J. Y. Lee, N. S. Cho, J. K. Kim, and J. H. Yang, Comparison of bipolar hosts and mixed-hosts as host structures for deep blue phosphorescent organic light emitting diodes, Chem. Asia J., 6, 2895-2898 (2011). https://doi.org/10.1002/asia.201100596
  29. R. J. Holmes, B. W. D. Andrade, S. R. Forrest, X. Ren, J. Li, and M. E. Thompson, Efficient, deep-blue organic electroluminescence by guest charge trapping, Appl. Phys. Lett., 83, 3818-3820 (2003). https://doi.org/10.1063/1.1624639
  30. X. Ren, J. Li, R. J. Holmes, P. I. Djurovich, S. R. Forrest, and M. E. Thompson, Ultrahigh energy gap hosts in deep blue organic electrophosphorescent devices, Chem. Mater., 16, 4743-4747 (2004). https://doi.org/10.1021/cm049402m
  31. J. Zhuang, W. Li, W. Su, Y. Liu, Q. Shen, L. Liao, and M. Zhou, Highly efficient phosphorescent organic light-emitting diodes using a homoleptic iridium(III) complex as a sky-blue dopant, Org. Electron., 14, 2596-2601 (2013). https://doi.org/10.1016/j.orgel.2013.06.029
  32. S. Lee, S. O. Kim, H. Shin, H. J. Yun, K. Yang, S. K. Kwon, J. J. Kim, and Y. H. Kim, Deep-blue phosphorescence from perfluoro carbonyl-substituted iridium complexes, J. Am. Chem. Soc., 135, 14321-14328 (2013). https://doi.org/10.1021/ja4065188
  33. C. Fan, L. Zhu, B. Jiang, Y. Li, F. Zhao, D. Ma, J. Qin, and C. Yang, High power efficiency yellow phosphorescent OLEDs by using new iridium complexes with halogen-substituted 2-phenylbenzo[d]thiazole ligands, J. Phys. Chem. C, 117, 19134-19141 (2013). https://doi.org/10.1021/jp406220c
  34. J. H. Jou, Y. X. Lin, S. H. Peng, C. J. Li, Y. M. Yang, C. L. Chin, J. J. Shyue, S. S. Sun, M. Lee, C. T. Chen, M. C. Liu, C. C. Chen, G. Y. Chen, J. H. Wu, C. H. Li, C. F. Sung, M. J. Lee, and J. P. Hu, Highly efficient yellow organic light emitting diode with a novel wet- and dry-process feasible iridium complex emitter, Adv. Funct. Mater., 24, 555-562 (2014). https://doi.org/10.1002/adfm.201302013
  35. S. L. Lai, W. Y. Tong, S. C. F. Kui, M. Y. Chan, C. C. Kwok, and C. M. Che, High efficiency white organic light-emitting devices incorporating yellow phosphorescent platinum(II) complex and composite blue host, Adv. Funct. Mater., 23, 5168-5176 (2013). https://doi.org/10.1002/adfm.201300281
  36. G. Cheng, S. C. F. Kui, W. H. Ang, M. Y. Ko, P. K. Chow, C. L. Kwong, C. C. Kwok, C. Ma, X. Guan, K. H. Low, S. J. Su and C. M. Che, Structurally robust phosphorescent [Pt(O^N^C^N)] emitters for high performance organic light-emitting devices with power efficiency up to 126 lm $W^{-1}$ and external quantum efficiency over 20%, Chem. Sci., 5, 4819-4830 (2014). https://doi.org/10.1039/C4SC01105H
  37. H. Cao, G. Shan, X. Wen, H. Sun, Z. Su, R. Zhong, W. Xie, P. Lia, and D. Zhua, An orange iridium(III) complex with wide-bandwidth in electroluminescence for fabrication of high-quality white organic light-emitting diodes, J. Mater. Chem. C, 1, 7371-7379 (2013). https://doi.org/10.1039/c3tc31365d
  38. R. Wang, D. Liu, H. Ren, T. Zhang, H. Yin, G. Liu, and J. Li, Highly efficient orange and white organic light-emitting diodes based on new orange iridium complexes, Adv. Mater., 23, 2823-2827 (2011). https://doi.org/10.1002/adma.201100302
  39. R. Wang, D. Liu, R. Zhang, L. Deng, and J. Li, Solution-processable iridium complexes for efficient orange-red and white organic light-emitting diodes, J. Mater. Chem., 22, 1411-1417 (2012). https://doi.org/10.1039/C1JM13846D
  40. M. Tavasli, T. N. Moore, Y. Zheng, M. R. Bryce, M. A. Fox, G. C. Griffiths, V. Jankus, H. A. Al-Attar, and A. P. Monkman, Colour tuning from green to red by substituent effects in phosphorescent tris-cyclometalated iridium(III) complexes of carbazole- based ligands: synthetic, photophysical, computational and high efficiency OLED studies, J. Mater. Chem., 22, 6419-6428 (2012). https://doi.org/10.1039/c2jm15049b
  41. A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, and K. Ueno, Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode, J. Am. Chem. Soc., 125, 12971-12979 (2003). https://doi.org/10.1021/ja034732d
  42. B. S. Du, J. L. Liao, M. H. Huang, C. H. Lin, H. W. Lin, Y. Chi, H. A. Pan, G. L. Fan, K. T. Wong, G. H. Lee, and P. T. Chou, Os(II) based green to red phosphors: A great prospect for solution processed, highly efficient organic light-emitting diodes, Adv. Funct. Mater., 22, 3491-3499 (2012). https://doi.org/10.1002/adfm.201200718
  43. H. Fukagawa, T. Shimizu, H. Hanashima, Y. Osada, M. Suzuki, and H. Fujikake, Highly efficient and stable red phosphorescent organic light-emitting diodes using platinum complexes, Adv. Mater., 24, 5099-5103 (2012). https://doi.org/10.1002/adma.201202167
  44. C. J. Zheng, W. M. Zhao, Z. Q. Wang, D. Huang, J. Ye, X. M. Ou, X. H. Zhang, C.S. Lee, and S. T. Lee, Highly efficient non-doped deep-blue organic light-emitting diodes based on anthracene derivatives, J. Mater. Chem., 20, 1560-1566 (2010). https://doi.org/10.1039/b918739a
  45. C. H. Wu, C. H. Chien, F. M. Hsu, P. I. Shih, and C. F. Shu, Efficient non-doped blue light-emitting diodes incorporating an anthracene derivative end-capped with fluorene groups, J. Mater. Chem., 19, 1464-1470 (2009). https://doi.org/10.1039/b817031b
  46. S. Tao, Y. Zhou, C. S. Lee, S. T. Lee, D. Huang, and X. Zhang, Highly efficient nondoped blue organic light-emitting diodes based on anthracene-triphenylamine derivatives, J. Phys. Chem. C, 112, 14603-14606 (2008). https://doi.org/10.1021/jp803957p
  47. K. H. Lee, Y. S. Kwon, J. Y. Lee, S. Kang, K. S. Yook, S. O. Jeon, J. Y. Lee, and S. S. Yoon, Highly efficient blue organic light-emitting diodes based on 2-(diphenylamino)fluoren-7-ylvinylarene derivatives that bear a tert-butyl group, Chem. Eur. J., 17, 12994-13006 (2011). https://doi.org/10.1002/chem.201100304
  48. K. H. Lee, L. K. Kang, J. Y. Lee, S. Kang, S. O. Jeon, K. S. Yook, J. Y. Lee, and S. S. Yoon, Molecular engineering of blue fluorescent molecules based on silicon end-capped diphenylaminofluorene derivatives for efficient organic light-emitting materials, Adv. Funct. Mater., 20, 1345-1358 (2010). https://doi.org/10.1002/adfm.200901895
  49. Y. M. Jeon, J. Y. Lee, J. W. Kim, C. W. Lee, and M. S. Gong, Deep-blue OLEDs using novel efficient spiro-type dopant materials, Org. Electron., 11, 1844-1852 (2010). https://doi.org/10.1016/j.orgel.2010.08.007
  50. Y. Zou, J. Zou, T. Ye, H. Li, C. Yang, H. Wu, D. Ma, J. Qin, and Y. Cao, Unexpected propeller-like Hexakis fluoren-2-yl)benzene cores for six-arm star-shaped oligofluorenes: Highly efficient deep-blue fluorescent emitters and good hole-transporting materials, Adv. Funct. Mater., 23, 1781-1788 (2013). https://doi.org/10.1002/adfm.201202286
  51. K. C. Wu, P. J. Ku, C. S. Lin, H. T. Shih, F. I. Wu, M. J. Huang, J. J. Lin, I. C. Chen, and C. H. Cheng, The photophysical properties of dipyrenylbenzenes and their application as exceedingly efficient blue emitters for electroluminescent devices, Adv. Funct. Mater., 18, 67-75 (2008). https://doi.org/10.1002/adfm.200700803
  52. K. L. Chan, J. P. F. Lim, X. Yang, A. Dodabalapur, G. E. Jabbour, and A. Sellinger, High-efficiency pyrene-based blue light emitting diodes: Aggregation suppression using a calixarene 3D-scaffold, Chem. Commun., 48, 5106-5108 (2012). https://doi.org/10.1039/c2cc30995e
  53. B. Wei, J. Z. Liu, Y. Zhang, J. H. Zhang, H. N. Peng, H. L. Fan, Y. B. He, and X. C. Gao, stable, glassy, and versatile binaphthalene derivatives capable of efficient hole transport, hosting, and deep-blue light emission, Adv. Funct. Mater., 20, 2448-2458 (2010). https://doi.org/10.1002/adfm.201000299
  54. C. J. Kuo, T. Y. Li, C. C. Lien, C. H. Liu, F. I. Wu, and M. J. Huang, Bis(phenanthroimidazolyl)bisphenyl derivatives as saturated blue emitters for electroluminescent devices, J. Mater. Chem., 19, 1865-1871 (2009). https://doi.org/10.1039/b816327h
  55. Y. Park, J. H. Lee, D. H. Jung, S. H. Liu, Y. H. Lin, L. Y. Chen, C. C. Wu, and J. Park, An aromatic imine group enhances the EL efficiency and carrier transport properties of highly efficient blue emitter for OLEDs, J. Mater. Chem., 20, 5930-5936 (2010). https://doi.org/10.1039/c0jm00581a
  56. S. L. Lin, L. H. Chan, R. H. Lee, M. Y. Yen, W. J. Kuo, C. T. Chen, and R. J. Jeng, Highly efficient carbazole-${\pi}$-dimesitylborane bipolar fluorophores for nondoped blue organic light-emitting diodes, Adv. Mater., 20, 3947-3952 (2008). https://doi.org/10.1002/adma.200801023
  57. W. Li, D. Liu, F. Shen, D. Ma, Z. Wang, T. Feng, Y. Xu, B. Yang, and Y. Ma, A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient, deep-blue electroluminescence, Adv. Funct. Mater., 22, 2797-2803 (2012). https://doi.org/10.1002/adfm.201200116
  58. T. Peng, K. Ye, Y. Liu, L. Wang, Y. Wu, and Y. Wang, Novel Beryllium complex as the non-doped emitter for highly efficient deep-blue organic light-emitting diode, Org. Electron., 12, 1914-1919 (2011). https://doi.org/10.1016/j.orgel.2011.08.006
  59. H. Kuma, Y. Jinde, M. Kawamura, H. Yamamoto, T. Arakane, K. Fukuoka, and C. Hosokawa, Highly efficient white OLEDs using RGB fluorescent materials, Proceedings of Society for Information Display. May 20-25, California, USA (2007).
  60. Y. Yang, R. T. Farley, T. T. Steckler, S. H. Eom, J. R. Reynolds, K. S. Schanze, and J. Xue, Efficient near-infrared organic light-emitting devices based on low-gap fluorescent oligomers, J. Appl. Phys., 106, 044509-044509-7 (2009). https://doi.org/10.1063/1.3204947
  61. J. Li, T. Nakagawa, J. MacDonald, Q. Zhang, H. Nomura, H. Miyazaki, and C. Adachi, Highly efficient organic light-emitting diode based on a hidden thermally activated delayed fluorescence channel in a Heptazine derivative, Adv. Mater. 25, 3319-3323 (2013). https://doi.org/10.1002/adma.201300575
  62. Q. Zhang, H. Kuwabara, W. J. Potscavage, Jr., S. Huang, Y. Hatae, T. Shibata, and C. Adachi, Anthraquinone-based intramolecular charge-transfer compounds: Computational molecular design, thermally activated delayed fluorescence, and highly efficient red electroluminescence, J. Am. Chem. Soc., 136, 18070-18081 (2014). https://doi.org/10.1021/ja510144h

Cited by

  1. Small-Molecule Emitters with High Quantum Efficiency: Mechanisms, Structures, and Applications in OLED Devices vol.6, pp.20, 2018, https://doi.org/10.1002/adom.201800512
  2. Thermally Activated Delayed Fluorescent Polymers: Structures, Properties, and Applications in OLED Devices pp.10221336, 2018, https://doi.org/10.1002/marc.201800570
  3. Water-soluble pH neutral triazatruxene-based small molecules as hole injection materials for solution-processable organic light-emitting diodes vol.7, pp.26, 2016, https://doi.org/10.1039/c9tc02125f
  4. A molecularly engineered near-infrared-light-emitting electrochemical cell (NIR-LEC) vol.44, pp.5, 2016, https://doi.org/10.1039/c9nj05512f
  5. Effects of the emission layer structure on the electroluminescence performance of the white organic light emitting diodes based on thermally activated delayed fluorescence emitters vol.53, pp.6, 2016, https://doi.org/10.1088/1361-6463/ab579f