• Title/Summary/Keyword: organic coating

Search Result 681, Processing Time 0.031 seconds

Comparative Study of Corrosion Resistance of Organic Coating and Dry Coating on 304 Stainless Steels Used for Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells (고분자전해질 연료전지 분리판용 304 스테인리스 강재의 유기습식 및 건식코팅에 따른 내식성 비교연구)

  • Yong Hyeon Kim;Jin Sung Park;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.242-251
    • /
    • 2023
  • The electrochemical corrosion behaviors of 304 stainless steels (STSs) with various coatings (organic coating and dry coating) were examined, and their applicability as bipolar plates in polymer electrolyte membrane fuel cells (PEMFCs) was validated. The results showed that the organic-coated samples had a significant decrease in anodic and cathodic current density compared to the uncoated sample. However, an increase in carbon black content in the organic coating or additional heat treatment at 700 ℃ resulted in a decrease in corrosion resistance. In addition, improvements in corrosion resistance achieved by adding TiO2 powder to the organic coating were found to be limited. In contrast, dry coating with TiC and CrC exhibited higher corrosion potential, significantly lower current density, and reduced contact resistance compared to the organic coatings. Notably, the TiC-coated sample showed a comparatively lower current density and more stable behavior than the CrC-coated sample. Based on a series of experimental results, a thin TiC coating without defects is proposed as a promising surface treatment strategy for STS bipolar plates in PEMFC.

Development of a Wireless Bar Coater Applied to Organic Solar Cells (유기 태양전지 제작이 가능한 와이어리스 바코터 개발)

  • Yu, Semin;Yu, Young Jae;Moon, Heekwang;Kim, Jung Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.584-588
    • /
    • 2013
  • Studies are using a roll forming bar. A bar coating device available for a variety of coating conditions was developed. It is characterized by the bar forward and reverse rotation, fine-tune coating speed, and stripe coating. To determine the characteristics of the equipment, the coating tests under different coating conditions were carried out. As a result of the coating tests, the equipment was confirmed as one of strong candidates for the production tool of organic solar cells. The further production test of organic solar cells through stripe coating is in progress.

Physical Aging Mechanism of Epoxy Coating by Hygrothermal Cycling Test

  • Kim, Min Hong;Lee, Gun Dae;Park, Jin Hwan
    • Corrosion Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.177-180
    • /
    • 2006
  • The anticorrosive performance of epoxy coating was examined by using the hygrothermal cyclic test and the degradation mechanism of the coating was investigated by using the AC impedance method. The relationship between the results obtained from different tests was studied. It was revealed that the hygrothermal cyclic test can be used as an effective acceleration test for the degradation of organic coating. It was also found in hygrothermal cyclic test that the epoxy coatings have the resistance to stresses at some extent. The degradation of organic coating seems to be caused by the decrease of resistance of coating and the increase of both capacitance and free volume in the organic coating.

Influence of Organic Pigment Blending on Surface and Optical Properties of Coated Paper (유기안료 배합이 도공층의 표면 및 광학적 특성에 미치는 영향)

  • Jeong, Kyoung-Mo;Won, Jong-Myoung;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.3
    • /
    • pp.1-8
    • /
    • 2012
  • The effects of several factors including organic pigment blending and calending conditions on the surface and optical properties of coated paper were investigated. When clay and calcium carbonate are blended in the ratio of 7 to 3, highest smoothness and relative sediment volume were obtained. When organic pigments were added to the mixture of clay and calcium carbonate, the relative sediment volume did not changed significantly. However, when organic pigments were added to calcium carbonate, sheet gloss and smoothness were improved, and showed the better results than that obtained from the mixture of organic pigment and clay. When organic pigment is blended with clay, the particles of organic pigment are buried in the packing structure of coating layer. However, the particle shape of calcium carbonate is quite different from that of clay, and the aspect ratio of calcium carbonate is similar to that of organic pigment. Thus organic pigment particles are not buried and improved effectively the physical characteristics of coating layer. When the hollow sphere pigment was blended, opacity and sheet gloss were improved significantly. Even though the coating color applied was reduced, the similar level of opacity was maintained. Also, if particle size and void volume are increased, gloss is improved, because coating layer is easily transformed in calendering. Therefore, even though lower pressure was applied during calendering, the smoothness of surface of coating layer was improved, and the decrease of void volume in coating layer was reduced, and the quality of coated sheet can be improved.

Evaluation on the Performance of Coating Materials for Improving the Durability of Concretes (콘크리트의 내구성 증진을 위한 코팅재의 성능 평가)

  • Kim, Sung-Soo;Choi, Choon-Sik;Nam, Yong-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.99-107
    • /
    • 2003
  • Normally coating is used a method for protecting reinforced concrete. For this purpose, organic as well as inorganic coatings are used. The advantages of inorganic coatings are lower absorption of UV, non-burning etc. On the other hand, organic coatings have the advantage of low permeability of $CO_2$, $SO_2$ and water. Organic coatings provide better protection for reinforced concrete. However, in organic coatings such as epoxy, urethane and acryl, long-term adhesive strength is reduced and the formed membrane of those is blistered by various causes. Also when organic coatings are applied to the wet surface of concrete, they have a problem with adhesion. So, we developed coating material, WGS-Eco which was hybridized with polymer and cement based material to protect concrete structures and solve problems of organic coatings. This study was conducted an comparative evaluation on physical and durable performance of developed coating material and previously used coating materials. As a result, the performance of developed coating material was not inferior to organic coating materials. So, the developed coating material was considered as a suitable coating material which had advantages of inorganic and organic coatings for protecting concrete.

Preparation of Hard Coating Films with High Refractive Index using Organic-Inorganic Hybrid Coating Solutions (유-무기 하이브리드 코팅 용액을 이용한 고굴절 하드코팅 막의 제조)

  • Choi, Jin Joo;Kim, Nam Uoo;Ahn, Chi Yong;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.388-394
    • /
    • 2014
  • Inorganic-organic hybrid coating solutions were synthesized using titania sol from titanium isopropoxide (TTIP) as an inorganic component and mixture of two or three types of silane coupling agents, such as methacryloxypropyl trimethoxysilane (MPTMS), aminopropyl triethoxysilane (APS), glycidoxypropyl trimethoxysilane (GPTMS) and vinyltriethoxysilane (VTES) as an organic component. The hard coating films were obtained by spin-coating on the polycarbonate sheets and curing the inorganic-organic hybrid coating solutions. The coating films made from the mixture of two types of silane coupling agents showed poor pencil hardness and adhesion, while those from the mixture of three types of silane coupling agents exhibited an improved pencil hardness of 2H~4H and adhesion of 5B. The refractive indexes of coating films were increased from 1.56 to 1.63 at 550 nm by increasing the content of titania sols from 20 to 30 g.

Corrosion protection of magnesium alloys by organic coatings

  • Fazal, Basit Raza;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.194.2-194.2
    • /
    • 2016
  • Magnesium has many desirable properties of which the high strength/weight ratio makes it extremely valuable in automobile and aerospace industry. However, the high corrosion susceptibility of magnesium and its alloys has greatly limited their large scale use for various applications. Organic coating is one of the most effective ways to prevent magnesium alloys from corrosion. An organic coating is normally used in the final stage of a coating process. It can enhance corrosion resistance of magnesium and its alloys. Organic coating involves a variety of process such as painting, powder coating, cathodic electrocoating (E-painting) and the application of lacquers, enamel and varnishes.

  • PDF

Uniform Coating of Organic-Capped Ba-Ti-O Nanolayers on Spherical Ni Particles

  • Lee, Yong-Kyun;Choi, Jae-Young;Yoon, Seon-Mi;Lee, Jong-Heun
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.86-90
    • /
    • 2007
  • The organic-capped Ba-Ti-O nanolayers were coated uniformly on spherical Ni particles for multilayer ceramic capacitor (MLCC) applications via the formation of Ti-hydroxide nano-coating layers and their subsequent reaction with Ba-stearate at $180^{\circ}C$. The capping of organic shell on oxide coating layer changed the hydrophilic surface structure into hydrophobic one, which significantly improved the dispersion behavior in hydrophobic solvents such as terpineol and butanol. In addition, the uniform coating of Ba-Ti-O layer was advantageous to prevent Ni oxidation. This method provides a useful chemical route to fabricate organic-soluble Ba-Ti-O coated Ni particles for a highly integrated passive component.

Preparation of TiO2-SiO2 Organic-Inorganic Hybrid Coating Material by Sol-gel Method and Evaluation of Corrosion Characteristics (졸-겔법에 의한 유·무기 TiO2-SiO2 혼성(Hybrid)코팅재료의 제조 및 부식 특성 평가)

  • Noh, J.J.;Maeng, W.Y.
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.64-75
    • /
    • 2015
  • Single $TiO_2$ coating prepared by sol-gel process usually experiences cracks in coating layer. In order to prevent cracks, an inorganic-organic hybrid $TiO_2-SiO_2$ coating was synthesized by combining precursors with an organic functional group. Five different coatings with various ratios of (1:8, 1:4, 1:1, 1:0.25 and 1:0.125) titanium alkoxide (TBOT, Tetrabutylorthotitanate) to organo-alkoxysilane (MAPTS, ${\gamma}$-Methacryloxy propyltrimethoxysilane) on carbon steel substrate were made by sol-gel dip coating. The prepared coatings were analyzed to study the coating properties (surface crack, thickness, composition) by scanning electron microscope (SEM), focused ion beam (FIB), and Fourier transform infrared spectroscopy (FT-IR). Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were also performed to evaluate the corrosion characteristics of the coatings. Crack free $TiO_2-SiO_2$ hybrid coatings were prepared with the optimization of the ratio of TBOT to MAPTS. The corrosion rates were significantly decreased in the coatings for the optimized precursor ratio without cracks.

Preparation of UV-curable Ozone Resistance Coating Solutions using Fluoromonomer (불소 단량체를 이용한 자외선 경화형 내 오존성 코팅 막 제조)

  • Lee, Chang Ho;Lee, Sang Goo;Kim, Sung Rae;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.421-426
    • /
    • 2012
  • The effect of synthesis conditions such as various organic material and composition of organic-inorganic material in ozone resistance and surface characteristic of ultraviolet cured organic-inorganic hybrid coating film has been investigated. Organic-inorganic hybrid coating solution was prepared using tetraethoxysilane (TEOS), silane coupling agent methacryloyloxypropyltrimethoxysilane (MPTMS), 2,2,2-trifluoroethylmethacrylate, and various organic materials with acrylate group, bar-coated on substrates using applicator and densified by UV-curing. It was found that ozone resistance and surface hardness of the coating film was increased with contents of TEOS. It was also found that ozone resistance of coating film was increased with contents of 2,2,2-trifluoroethylmethacrylate. On the other hand, surface hardness was decreased with increase of 2,2,2-trifluoroethylmethacrylate. In addition, Surface hardness of coating film was increased with the addition of aliphatic urethane acrylate. It was also found that the transmittance of coating films was not influenced by content of TEOS and 2,2,2-trifluoroethylmethacrylate. In addition, the coating film exhibited high transmittance of above 90%.