Browse > Article
http://dx.doi.org/10.14773/cst.2015.14.2.64

Preparation of TiO2-SiO2 Organic-Inorganic Hybrid Coating Material by Sol-gel Method and Evaluation of Corrosion Characteristics  

Noh, J.J. (Department of Material Engineering, Korea University of Technology and Education)
Maeng, W.Y. (Department of Nuclear Material, Korea Atomic Energy Research Institute)
Publication Information
Corrosion Science and Technology / v.14, no.2, 2015 , pp. 64-75 More about this Journal
Abstract
Single $TiO_2$ coating prepared by sol-gel process usually experiences cracks in coating layer. In order to prevent cracks, an inorganic-organic hybrid $TiO_2-SiO_2$ coating was synthesized by combining precursors with an organic functional group. Five different coatings with various ratios of (1:8, 1:4, 1:1, 1:0.25 and 1:0.125) titanium alkoxide (TBOT, Tetrabutylorthotitanate) to organo-alkoxysilane (MAPTS, ${\gamma}$-Methacryloxy propyltrimethoxysilane) on carbon steel substrate were made by sol-gel dip coating. The prepared coatings were analyzed to study the coating properties (surface crack, thickness, composition) by scanning electron microscope (SEM), focused ion beam (FIB), and Fourier transform infrared spectroscopy (FT-IR). Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were also performed to evaluate the corrosion characteristics of the coatings. Crack free $TiO_2-SiO_2$ hybrid coatings were prepared with the optimization of the ratio of TBOT to MAPTS. The corrosion rates were significantly decreased in the coatings for the optimized precursor ratio without cracks.
Keywords
$TiO_2$; $SiO_2$; Sol-Gel; Dip-coating; Inorganic-Organic Hybrid Material;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. S. Bae, Polym. Sci. Technol., 12, 716 (2001).
2 S. H. Jang, Polym. Sci. Technol., 12, 676 (2001).
3 M. J Han, J. Y. Mang and J. Y. Seo, Polym. Korea, 34, 405 (2010).
4 C. M. Whang, C. S. Yeo and Y. H. Kim, Bull. Korean Chem. Soc., 22, 1366 (2001).
5 D. Wang and G. P. Bierwagen, Prog. Org. coat., 64, 327 (2010).
6 S. Islam, JSST, 68, 162 (2013).
7 M. Nowacka, K. Siwinska-Stefanka and T. Jesionowski, Colloid Polym. Sci., 291, 603 (2013).   DOI
8 L. Jianguo, G. Gaoping and Y. Chuanwei, Surf. Coating Tech., 200, 4967 (2006).   DOI   ScienceOn
9 Y. G. Kim. Master's Thesis, p. 18, Inha University (2004).
10 K. C. Ahn, J. K. Lee, H. G. Kim and K. S. No, J. Kor. Ceram. Soc., 29, 216 (1992).
11 S. K. Oh, J. S. Chung, B. S. Lee and K. C. Song, Korean Chem. Eng. Res., 46, 274 (2008).
12 S. H. Lee. Master's Thesis, p. 35, Kyung Hee University (2008).
13 D. H. Son, Y. Y. Lee, S. J. Kim, S. S. Hong, G. D. Lee, and S. S. Park, Appl. Chem. Eng., 22, 691 (2011).
14 D. H. Son, D.-S. Kim, S.-H. Lee, S. H. Kim, G.-D. Lee and S. S. Park, Appl. Chem. Eng., 23, 53 (2012).
15 J. Strunk, W. C. Vining and A. T. Bell, J. Phys. chem., 114, 16937 (2010).
16 V. A. Zeitler and C. A. Brown, J. Phys. chem., 61, 1174 (1957).   DOI
17 Y. S. Song, Master's Thesis, p. 19, Hanyang University (2003).
18 A. Pirson, A. Mohsine, P. Marchot, B. Michaux, O. V. Cantfort, J. P. Pirard, JSST, 4, 179 (1995).
19 C. F. Song, M. K. Lu, P. Yang, D. Xu, D. R. Yuan, Thin Solid Films, 413, 155 (2002).   DOI   ScienceOn
20 E. E. Stansbury, Fundamental of Electrochemical Corrosion, p. 200, ASM International, OH (2000).
21 B. E. Wilde, F. G. Hodge, Electrochim. Acta, l14, 619 (1969).
22 G. S. L. Gray and R. B. Appleman, J. Phys. Chem. Lett., 20, 66 (2003).
23 R. B. Vignesh, T. N. J. I. Edison and M. G. Sethuraman, J. Mater. Sci. Technol., 30, 814 (2014).   DOI   ScienceOn
24 C. H. Tsai and F. Mansfeld, Corrosion, 40, 726 (1993).