• Title/Summary/Keyword: organic acid bacteria

Search Result 454, Processing Time 0.023 seconds

Growth Inhibition of Enteropathogenic Escherichia coli $A_2$and Escherichia coli $G_7$ by the Organic Acid Producing Bacteria (유기산 생성균에 의한 병원성 Escherichia Coli $A_2$와 Escherichia Coli $G_7$의 생육억제)

  • 백영진;배형석
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.2
    • /
    • pp.111-118
    • /
    • 1988
  • The growth inhibition of enteropathogenic Escheriohia coli $A_2$and Escherichia coli G$_7$, causing the diarrhea in piglets, by the organic acid producing bacteria was studied in vitro. The metabolites of the organic acid bacteria, such as lactic acid, acetic acid inhibited the growth of E. coli $A_2$and E. coli G$_7$ in BL medium. The more the organic acid producing bacteria have ability to produce the organic acids, the higher these bacteria excelled the inhibitory efficacy against enteropathogenic E. coli. Among the strains examined, Lactobacillus casei Y and Streptococcus faecium C showed relatively strong growth inhibition against enteropathogenic E. coli.. When the organic acid producing bacteria and the enteropathogenic E. coli were incubated simultaneously in BL medium, bacteriostasis of E. coli was observed when the pH of BL culture was lowered to 5.0, and bacteriocidal effect was observed when the pH became Bess than 4.5, E. coli. $A_2$was more resistant to the organic acid bacteria than E. coli G$_7$.

  • PDF

Effects of Non-Volatile Organic Acids in the KimChi by Lactic Acid Bacteria (젖산균 첨가가 김치의 비취발성 유기산 생성에 미치는 영향)

  • Hyeon, In-Hwan;Kim, Gwang-Su;Jeong, Nak-Hyeon
    • The Korean Journal of Food And Nutrition
    • /
    • v.3 no.2
    • /
    • pp.141-148
    • /
    • 1990
  • This studies were carried out to investigate the effects of non-volatile organic acids in the KimChi by lactic acid bacteria. The organism isolated from KimChi, Pediococcus dextrinicus, Leuconostoc mesenteroides, Lactobacillus plantarum and Lactobacillus brevis, were inoculated for preparation of KimChi. pH of all on the KimChi sample dropped sharply according as fermentation continued. pH of on optimum ripening period KimChi(4.4 and 4.2) reached 1.3 and 1.9 day at all on sample, respectively. Optimum acidity(0.5%) of KimChi were reached within 2 day all on sample. The total number of lactic acid bacteria reached 1.0X107cells/ml in 1 day and decreased slowly after 4 day. Main non-volatile organic acids were identified lactic, malic and succinic acid. The sensory score of mixed lactic acid bacteria inoculated KimChi was better than that of another KimChi.

  • PDF

Functional Characteristics of Kombucha Fermented with Lactic Acid Bacteria, Yeast, and Acetic Acid Bacteria Derived from Korea Traditional Foods

  • Lee, Su-Min;Lee, Jae-Yong;Yoo, Dong-Gyu;Jeon, Yu-Bin;Yoon, Ho-Sik;Kim, Cheol-Hyun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.1
    • /
    • pp.23-34
    • /
    • 2022
  • In this study, to determine the importance of lactic acid bacteria (LAB) in Kombucha fermentation, biological functions, such as organic acid production and anti-inflammatory and antibacterial activities, of Kombucha, with or without LAB inoculation, were evaluated. Lactobacillus paracasei DK215, Saccharomyces cerevisiae C3, and Acetobacter pasteurianus P2 were selected as the inoculants. Organic acids were measured every 3 days from the end of fermentation using HPLC; the organic acid content of LAB-inoculated Kombucha was relatively high. Samples with or without LAB inoculation showed high antibacterial activity against Escherichia coli. The MTT assay results indicated no significant difference in concentration difference and cell death. In the NO production test, compared with the uninoculated Kombucha sample, the LAB-inoculated Kombucha sample exhibited a value similar to that of the group without LPS treatment. The levels of cytokine (IL-1α, IL-6, TNF-α) production were significantly lower than those of the LPS(+) group, indicating the anti-inflammatory activity potential of the Kombucha sample. This improvement in the biological function of the LAB-inoculated Kombucha further verifies the value of LAB in the fermented food and beverage industry.

Variation in Microbial Biomass and Community Structure in Sediments of Peter the Great Bay (Sea of Japan/East Sea), as Estimated from Fatty Acid Biomarkers

  • Zhukova Natalia V.
    • Ocean Science Journal
    • /
    • v.40 no.3
    • /
    • pp.145-153
    • /
    • 2005
  • Variation in the microbial biomass and community structure found in sediment of heavily polluted bays and the adjacent unpolluted areas were examined using phospholipid fatty acid analysis. Total microbial biomass and microbial community structure were responding to environmental determinants, sediment grain size, depth of sediment, and pollution due to petroleum hydrocarbons. The marker fatty acids of microeukaryotes and prokaryotes - aerobic, anaerobic, and sulfate-reducing bacteria - were detected in sediments of the areas studied. Analysis of the fatty acid profiles revealed wide variations in the community structure in sediments, depending on the extent of pollution, sediment depth, and sediment grain size. The abundance of specific bacterial fatty acids points to the dominance of prokaryotic organisms, whose composition differed among the stations. Fatty acid distributions in sediments suggest the high contribution of aerobic bacteria. Sediments of polluted sites were significantly enriched with anaerobic bacteria in comparison with clean areas. The contribution of this bacterial group increased with the depth of sediments. Anaerobic bacteria were predominantly present in muddy sediments, as evidenced from the fatty acid profiles. Relatively high concentrations of marker fatty acids of sulfate-reducing bacteria were associated with organic pollution in this site. Specific fatty acids of microeukaryotes were more abundant in surface sediments than in deeper sediment layers. Among the microeukaryotes, diatoms were an important component. Significant amounts of bacterial biomass, the predominance of bacterial biomarker fatty acids with abundance of anaerobic and sulfate-reducing bacteria are indicative of a prokaryotic consortium responsive to organic pollution.

Hydrogen and Organic Acids Production by Fermentation Using Various Anaerobic Bacteria (각종 혐기성 미생물 발효에 의한 유기산 및 수소생산)

  • Kim, Mi-Sun;Yoon, Y.S.;Sim, S.J.;Park, T.H.;Lee, J.K.
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.4
    • /
    • pp.321-329
    • /
    • 2002
  • Clostridium butyricum, Lactobacillus amylophillus, Lactobacillus amylovorus, Lactobacillus acidophillus, AI-9 produced hydrogen and /or organic acids using glucose, lactose and starch at the anaerobic culture conditions. Cl. butyricum NCIB 9576 evolved 1,700 ml H2/L-culture broth and accumulated butyric acid, acetic acid, propionic acid and ethanol in its culture broth when lactose was used as a carbon source during 24 hrs of fermentation. L. amylovorus ATCC 33620 accumulated lactic and acetic acids and some reducing sugars when starch was used as a carbon source without hydrogen production. Instead of starch as a carbon source, L. amylovorus ATCC 33620 produced lactic acid from algal biomass during fermentation and the acid-heat or freeze-thaw pretreatment of algal biomass accelerate the lactic acid fermentation.

Impacts of Soil Organic Matter on Microbial Community of Paddy Soils in Gyeongnam Province

  • Son, Daniel;Sonn, Yeon-Kyu;Weon, Hang-Yeon;Heo, Jae-Young;Kim, Dae-Ho;Choi, Yong-Jo;Lee, Sang-Dae;Ok, Yong Sik;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.783-788
    • /
    • 2016
  • Agricultural management of paddy soil depends on the effects of soil microbial activities. The present study evaluated the soil microbial community of 25 paddy soils in Gyeongnam Province by fatty acid methyl ester (FAME). The average of microbial communities in paddy soils were 32.2% of total bacteria, 16.7% of Gram-negative bacteria, 12.9% of Gram-positive bacteria, 2.0% of actinomycetes, 14.9% of fungi, and 1.3% of arbuscular mycorrhizal fungi. The communities of total bacteria (34.9%) and Gram-negative bacteria (19.4%) in soils with $30{\sim}35g\;kg^{-1}$ of organic matter were significantly larger than those in soils with other organic matter levels. However, soils with $20{\sim}30g\;kg^{-1}$ of organic matter had significantly low ratio of cy17:0 to $16:1{\omega}7c$ and cy19:0 to $18:1{\omega}7c$ as compared with soils with $30{\sim}35g\;kg^{-1}$ of organic matter, indicating microbial stress decreased (p < 0.05). In principal component analyses of soil microbial communities, Gram-negative bacteria should be considered as a potential responsible factor for the obvious microbial community differentiation that was observed between the two different organic matter levels in paddy fields. Thus, soils containing $20{\sim}30g\;kg^{-1}$ of organic matter were responsible for strong effect on microbial biomass and stress in paddy fields.

Effects of Lactic Acid Bacteria Inoculant on Fermentation Quality and in vitro Rumen Fermentation of Total Mixed Ration

  • Choi, Yeon Jae;Lee, Sang Suk
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.3
    • /
    • pp.132-140
    • /
    • 2019
  • Fermented total mixed ration (TMR) is a novel feed for ruminants in South Korea. The purpose of this study was to evaluate the effects of lactic acid bacteria (LAB) on the quality of TMR and in vitro ruminal fermentation. Strains of three LAB spp. (Lactobacillus plantarum, L. brevis, L. mucosae) were used in fermentation of TMR. Inoculations with the three LAB spp. lowered pH and increased concentrations of lactic acid, acetic acid, and total organic acid compared to non-LAB inoculated control (only addition of an equivalent amount of water) (p<0.05). Bacterial composition indicated that aerobic bacteria and LAB were higher. However, E. coli were lower in the fermented TMR than those in the control treatment (p<0.05). Among the treatments, L. brevis treatment had the highest concentration of total organic acid without fungus detection. Gas production, pH, and ammonia-nitrogen during ruminal in vitro incubation did not differ throughout incubation. However, ruminal total VFA concentration was higher (p<0.05) in the LAB spp. treatments than the control treatment at 48 hours. Overall, the use of L. brevis as an inoculant for fermentation of high moisture. TMR could inhibit fungi growth and promote lactic fermentation, and enhance digestion in the rumen.

Fermentation of Environmental Friend Total Mixed Ration and Alteration of Rumen Fermentation Characteristics (환경친화적 섬유질 배합사료의 발효와 반추위 발효특성 변화)

  • Ryu, Chae-Hwa;Park, Myung-Sun;Park, Chul;Choi, Nag-Jin;Cho, Sang-Buem
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.461-473
    • /
    • 2017
  • Total mixed ration (TMR) including concentrate diet and roughage together have been used for the ruminant animal. Relatively high concentrations of moisture and water soluble carbohydrate are representative feature of TMR. Those moisture and water can also provide a niche for bacterial growth. Therefore, a possible fermentation of TMR induced by micro-organism is generally accepted. The present study hypothesized that different lactic acid bacteria could alter fermentation of TMR and subsequently rumen fermentation. Three lactic acid bacteria, Lactobacillus paracasei (A), L. plantarum (B) and L. parabuchneri (C), were employed and 7 treatments under full factorial design were compared with control without inoculation. TMR for dairy cow was used. Significant alterations by treatments were detected at lactic acid and butyric acid contents in TMR (p<0.05). Treatment AC (mixture of A and C) and BC (mixture of B and C) showed great lactate production. Great butyrate production was found at treatment C. At in vitro rumen fermentation, treatments B, C and AB (mixture of A and B) showed significantly great total gas production (p<0.05). All treatments except treatments B and AB, showed less dry matter digestibility, significantly (p<0.05). Total volatile fatty acid production at treatment AC was significantly greater than others (p<0.05). In individual volatile fatty acid production, treatment AB and AC showed great acetate and propionate productions, significantly (p<0.05). This study investigated correlation between organic acid production in TMR and rumen volatile fatty acid production. And it was found that butyric acid in TMR had significant negative correlation with acetate, propionate, total volatile fatty acid, AP ratio and dry matter digestibility.

Effects of Aqueous Ozone Combined with Organic Acids on Microflora Inactivation in the Raw Materials of Saengsik

  • Bang, Woo-Suk;Eom, Young-Ran;Eun, Jong-Bang;Oh, Deog-Hwan
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.958-962
    • /
    • 2007
  • This study was conducted to determine the effects of microorganism inactivation using 3 ppm of aqueous ozone (AO), 1% citric acid, 1% lactic acid, and 1% acetic acid alone, as well as the combinations of AO and organic acid, for washing the raw materials of saengsik (carrot, cabbage, glutinous rice, barley) with or without agitation. The combination of AO and 1% of each organic acid significantly inactivated spoilage bacteria in both the vegetables and the grains (p<0.05). However, in the glutinous rice, no inhibitory effects were shown for total aerobic bacteria by using water, ozone, or the combination of AO with citric acid or lactic acid, without agitation. Microbial inactivation was enhanced with agitation in the grains, whereas dipping (no agitation) treatments showed better inhibitory effects in the vegetables than in the barley, suggesting that washing processes should take into account the type of food material.

Effects of Organic Acids on In Vitro Ruminal Fermentation Characteristics and Methane Emission (Organic acids 의 첨가가 in vitro 반추위 발효성상과 메탄 생성에 미치는 영향)

  • Ok, Ji Un;Ha, Dong Uk;Lee, Shin Ja;Kim, Eun Tae;Lee, Sang Suk;Oh, Young Kyun;Kim, Kyoung Hoon;Lee, Sung Sill
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1324-1329
    • /
    • 2012
  • The objective of this study was to evaluate the in vitro effects of organic acids on methane emission and ruminal fermentation characteristics. We expected our methodology to result in a decrease of methanogens attached to the surface of rumen ciliate protozoa by addition of organic acids and in particular a decrease in methane emission. A fistulated Holstein cow of 650 kg body weight was used as a donor of rumen fluid. Organic acids (aspartic acid, fumaric acid, lactic acid, malic acid, and succinic acid) known to be propionate enhancers were added to an in vitro fermentation system and incubated with rumen fluid. The microbial population, including bacteria, protozoa, and fungi, were enumerated, and gas production, including methane and fermentation characteristics, were observed in vitro. Organic acids appeared to affect the rumen protozoan community. The rumen protozoal popuation decreased with the addition of aspartic acid, fumaric acid, lactic acid, and malic acid. In particular, the methane emission was reduced by addition of lactic acid. The concentration of propionate with all organic acids that were added appeared to be higher than that of the control at 12 h incubation. Addition of organic acids significantly affected rumen bacteria and microbial growth. The bacteria in added fumaric acid and malic acid was significantly higher (p<0.05) and protozoa was significantly lower (p<0.05) than that of the control. Microbial growth with the addition of organic acids was greater than the control after 48 h incubation.