• Title/Summary/Keyword: optimum medium composition

Search Result 144, Processing Time 0.029 seconds

Production and Properties of Tannase from Lenzites betulina (Lenzites betulina에 의한 Tannase 생산 및 성질에 관한 연구)

  • Hong, Jae-Sik;Kim, Myung-Kon;Kim, Keum-Jae;Kwak, In-Gu;Yoon, Sook
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.6
    • /
    • pp.591-598
    • /
    • 1990
  • Six species under the basidiomycetes were screened for extracellular tannase (tannin acyl hydrolase EC 3.1. 1.20) production in submerged culture and Lenzites betulina was found to be most effective for the production of tannase. The optimum cultural conditions for tannase production were $25^{\circ}C$, pH 6.0 and 21 days of culture period, The efficient composition of culture medium for the production of tannase was performed in synthetic medium containing tannic acid, 2g; sucrose, 5g; bacto-peptone, 2g; ,$ KH_2PO_4, \;2g,\; MgSO_4.7H_2O \;0.5g,\; CuS0_4.5H_2O$, 2 mg; thiamine HCl, 100 ug and distilled water 100 ml, The tannase produced from Lenzites bdulin*r was 223.3 unit (umole of gaUic acidiml of brothlmin). The tannase had an optimal reaction conditions ofpH 6.0 and temperature of $40^{\circ}C$. The enzyme was stable at temperature below $40^{\circ}C$ and lost its activity by 50% above $60^{\circ}C$. And the stable pH range was 5.5 to 6.0.

  • PDF

Production of expressed protein from cloned ShigatoxinG 2e gene and Receptor Binding Affinity of the toxin (재조합 Shigatoxin 2e 유전자의 발현단백 생산 및 독소의 수용체 결합 친화성 확인)

  • Dong, Bun-youn;Kim, Sang-Hyun;Kim, Yeong-Il;Cho, Hyun-Ho;Lee, Woo-won;Kim, Kon-Sup;Kang, Ho-Jo;Kim, Yong-Hwan
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.2
    • /
    • pp.251-257
    • /
    • 2004
  • This study was designed to determine optimal condition for expression of cloned Shigatoxin2e(Stx2e) gene from transformed E. coli PED18, to compare the cytotoxicity titer between cloned Stx2e and Stx2e from original strain, and to confirm of receptor binding affinity of Stx2e for use of development of receptor binding ELISA to detect of Stx2e. The optimum composition of medium for expression of Stx2e gene in E.coli host-vector system was definded as the medium containing 0.5% glucose and 0.5 mM IPTG. The cytotoxicity titer of expressed Stx2e for Vero cell was 1000 fold higher than that of Stx2e from original strain AY93258. The binding affinity of Stx2e to receptor globotetraosyl ceramide($Gb_4$) was confirmed by immunobloting.

Increased Alkaline Protease Production from Bacillus clausii I-52 by Experimental Design Methods (통계학적 방법을 이용한 Bacillus clausii I-52로부터 염기성 단백질 분해효소 생산 증진)

  • Lee Jae-woo;Kim Hyun-soo;Chang Chung-soon;Kim Eun-ki
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.215-219
    • /
    • 2005
  • Production of alkaline pretense by Bacillus clausii I-52 was optimized by experimental design methods. Among 7 medium components, three (wheat flour, sodium citrate, sodium carbonate) were selected as components affecting the pretense activity significantly by Plackett-Burman methods. Furthermore the ranges of effective concentrations were determined by Box-Behnken methods. The objective function describing the alkaline pretense production was obtained and optimum concentration of 3 components was determined by using response-surface methods (RSM). Theoretical maximum production was 74000 U/mL (Wheat flour: 0 g/L, Sodium citrate: 5 g/L, Sodium carbonate: 10 g/L). With the optimized medium composition, 92000 U/mL alkaline protease was produced experimentally, resulting in $90\%$ increase compared to before-optimization production (49000 U/mL).

Isolation and Culture Conditions of Hydrogen Producing Bacterium Enterobacter sp. ES392 (수소생산균 Enterobacter sp. ES392의 분리 및 배양조건)

  • Jeon, Sung-Jong;Lee, Eon-Seok
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.399-404
    • /
    • 2010
  • A hydrogen-producing bacterium (strain ES392) was isolated from pond water located in the Dong-Eui University, Busan, Korea. The cell was long-rod type ($1.4\;{\mu}m$) of about ($0.6\;{\mu}m$) in diameter, and not formed flagellum and spore. Phylogenetic analysis based on the 16S rRNA sequence and biochemical studies indicated that ES392 belonged to the genus Enterobacter sp. The optimum pH and temperature for hydrogen production was 7.5 and $35^{\circ}C$, respectively. The optimization of medium compositions which maximize hydrogen production from Enterobacter sp. ES392 was determined. As a result, the maximum hydrogen production was obtained under the conditions of 4% (w/v) sucrose, 0.5% (w/v) yeast extract and 50 mM potassium phosphate buffer (pH 7.5). Under batch culture conditions, the maximal hydrogen production and yield were obtained as 3481 mL/L and 1.33 mol/mol sucrose, respectively.

Production of Baicalin, Baicalein, and Wogonin on Plant Tissue Culture of Scutellaria baicalensis (황금(Scutellaria baicalensis) 조직배양에 의한 Baicalin, Baicalein 및 Wogonin 생산)

  • Hwang, In-Taek;Lee, Jae-Jin;Lee, Joo–Young;Paik, Seung-Woo;Kim, Yong-Ho
    • Korean Journal of Plant Resources
    • /
    • v.28 no.4
    • /
    • pp.526-532
    • /
    • 2015
  • Scutellaria baicalensis Georgi (SJ) is a perennial plant and its root has been used in oriental traditional medicine for treatment of fever, inflammation, diarrhea and anticancer effect, etc. In this study, plant tissue culture system for SJ was developed. Stem piece of younger plant was optimum explant for callus induction and growth on MS medium supplemented with NAA 1.0 ㎎/L plus BA 0.5 ㎎/L. Plantlet regeneration through callus culture was well on MS medium containing NAA 1.0 mg/L. SJ has been known biologically active substances such as baicalin, baiclein, and wogonin. This study was carried out to examine the effect of plant growth regulators for production of baicalin, baicalein, and wogonin through callus culture. The HPLC pattern of callus extract was identical to that of standard solution, it shows that the callus produced by tissue culture has the same flavonoids composition of SJ. Baicalin, baicalein, and wogonin production was 471.5~52.8 ㎍/g, 137.6~4.0 ㎍/g, and 16.6~1.3 ㎍/g, respectively, on MS media with nine different plant growth regulator combinations. This may indicate that plant tissue culture of SJ possible to produce the biologically active substances effectively

Statistical Optimization of Medium Composition for Bacterial Cellulose Production by Gluconacetobacter hansenii UAC09 Using Coffee Cherry Husk Extract - an Agro-Industry Waste

  • Rani, Mahadevaswamy Usha;Rastogi, Navin K.;Anu Appaiah, K.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.739-745
    • /
    • 2011
  • During the production of grape wine, the formation of thick leathery pellicle/bacterial cellulose (BC) at the airliquid interface was due to the bacterium, which was isolated and identified as Gluconacetobacter hansenii UAC09. Cultural conditions for bacterial cellulose production from G. hansenii UAC09 were optimized by central composite rotatable experimental design. To economize the BC production, coffee cherry husk (CCH) extract and corn steep liquor (CSL) were used as less expensive sources of carbon and nitrogen, respectively. CCH and CSL are byproducts from the coffee processing and starch processing industry, respectively. The interactions between pH (4.5-8.5), CSL (2-10%), alcohol (0.5-2%), acetic acid (0.5-2%), and water dilution rate to CCH ratio (1:1 to 1:5) were studied using response surface methodology. The optimum conditions for maximum BC production were pH (6.64), CSL (10%), alcohol (0.5%), acetic acid (1.13%), and water to CCH ratio (1:1). After 2 weeks of fermentation, the amount of BC produced was 6.24 g/l. This yield was comparable to the predicted value of 6.09 g/l. This is the first report on the optimization of the fermentation medium by RSM using CCH extract as the carbon source for BC production by G. hansenii UAC09.

A study on the Inulase of Streptomyces chibaensis - Part II. Culture conditions for the Inulase Production by Streptomyces chibaensis - (Streptomyces chibaensis가 생산(生産)하는 Inulase에 관한 연구(硏究) - 제2보(第二報). Streptomyces chibaensis의 Inulase 생산조건(生産條件)에 대(對)하여 -)

  • Chung, Koo-Young;Park, Sung-Oh;Lee, Ke-Ho
    • Applied Biological Chemistry
    • /
    • v.23 no.4
    • /
    • pp.211-217
    • /
    • 1980
  • Using Streptomyces chibaensis, which produces a strong inulin-hydrolyzing enzyme, the optimum cultural conditions and composition of the medium for the production of inulase were studied. 1. The highest enzyme activity was obtained at pH 7.5 after 84 hours culture at $30^{\circ}C$. 2. None of carbon source better than inulin was found. 3. $(NH_4)_2HPO_4$ and corn steep liquor were favourable inorganic and organic nitrogen sources for the production of inulase. 4. $KCl,\;MgSO_4\;and\;FeSO_4$ as the metallic salts were effective for the enzyme production at their concentrations of 0.01, 0.05 and 0.0001%, respectively. 5. The highest production of inulase was obtained from the medium of inulin 1.0% and corn steep liquor 2.0% concentrations, respectively.

  • PDF

Incorporation of Graphitic Porous Carbon for Synthesis of Composite Carbon Aerogel with Enhanced Electrochemical Performance

  • Singh, Ashish;Kohli, D.K.;Singh, Rashmi;Bhartiya, Sushmita;Singh, M.K.;Karnal, A.K.
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.204-211
    • /
    • 2021
  • We report, synthesis of high surface area composite carbon aerogel using additive based polymerization technique by incorporating graphitic porous carbon as additive. This additive was separately prepared using sol-gel polymerization of resorcinol-furfuraldehyde in iso-propyl alcohol medium at much above the routine gelation temperature to yield porous carbon (CA-IPA) having graphitic layered morphology. CA-IPA exhibited a unique combination of meso-pore dominated surface area (~ 700 m2/g) and good conductivity of ~ 300 S/m. The composite carbon aerogel (CCA) was synthesized by traditional aqueous medium based resorcinol-formaldehyde gelation with CA-IPA as additive. The presence of CA-IPA favored enhanced meso-porosity as well as contributed to improvement in bulk conductivity. Based on the surface area characteristics, CCA-8 composition having 8% additive was found to be optimum. It showed specific surface area of ~ 2056 m2/g, mesopore area of 827 m2/g and electrical conductivity of 180 S/m. The electrode formed with CCA-8 showed improved electrochemical behavior, with specific capacitance of 148 F/g & ESR < 1 Ω, making it a better choice as super capacitor for energy storage applications.

Screening of Effective Medium Composition for the Cultivation of Lactobacillus plantarum and Lactobacillus reuteri Using Statistical Methods (통계적 방법을 이용한 Lactobacillus plantarum과 Lactobacillus reuteri 의 유효 배지 성분의 탐색)

  • Kim, Dong-Woon;Cho, Sang-Buem;Kim, Young-Hwa;Lee, Sung-Daw;Jung, Hyun-Jung;Kim, Sang-Ho;Cho, Kyu-Ho;Sa, Soo-Jin;Kim, In-Cheul;Won, Mi-Young;Kim, Su-Ok;Kim, Soo-Ki
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.575-581
    • /
    • 2012
  • This study was conducted to develop an economical optimum medium composition for the mass production of $Lactobacillus$ $plantarum$ and $Lactobacillus$ $reuteri$, livestock probiotics. Medium ingredient factors were selected on the basis of MRS broth composition, and the 15 ingredient variables were as follows: sucrose, glucose, molasses, yeast extract, corn steep liquor, soy peptone, dipotassium phosphate, manganese chloride, magnesium chloride, tween 80, sodium chloride, sodium acetate, ammonium citrate, sodium sulphate, and ferrous sulphate. The Plackett Burman design, consisting of 20 runs, was employed for the analysis of ingredient effects on cell growth of $L.$ $plantarum$ and $L.$ $reuteri$. As a result, sucrose, glucose, molasses, yeast extract, corn steep liquor, soy peptone, sodium acetate, and ammonium citrate positively influenced the growth of $L.$ $plantarum$. Additionally, yeast extract, soy peptone, $K_2PHO_4$, and tween 80 positively influenced the growth of $L.$ $reuteri$. Positive effects were found from sucrose, yeast extract, and soy peptone in the integrated analysis of the effects of both $L.$ $plantarum$ and $L.$ $reuteri$. Finally, effective medium components for both strains were found as follows: sucrose (20.0 g/l), glucose (5.0 g/l), soy peptone (11.0 g/l), yeast extract (5.0 g/l), $K_2PHO_4$ (0.2 g/l), $CH_3COONa$ (2 g/l), and $MgCl_2$ (0.02 g/l).

Cultural Characteristics of a Biosurfactant-Producing Microorganism Pseudomonas aeruginosa F722 (Biosurfactant 생산균주 Pseudomonas aeruginosa F722의 배양특성)

  • ;;;Motoki Kubo
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.171-176
    • /
    • 2003
  • Productivity of biosurfactant (rhamnolipid) by Pseudomonas aeuginosa F722 was investigated in the several culture conditions and culture composition. Biosurfactant production by P. aeuginosa F722 was amounted to 0.78 g/l as the result of the nitrogen sources and carbon sources without investing of optimum conditions. As for that one was investigated, biosurfactant production by P. aeruginosa F722 was amounted to 1.66 g/l. Biosurfactant production increased twofold because the composition of a modified C-medium was investigated efficiently. $NE_4$Cl or $NaNO_2$ inorganic nitrogens and yeast extract or trypton organic nitrogens were effective, but others inorganic nitrogens and organic nitrogens tested were not efficient far biosurfactant production by P. aeruginosa F722. The optimum concentration of $NH_4$Cl; inorganic nitrogen and yeast extract; organic nitrogen were 0.05% and 0.1%, respectively. In various carbon sources, others with the exception of hydrophobic property substrate (n-alkane) and hydrophilic property substrate (glucose, glycol) were not found to be effective fur biosurfactant production, and 3.0% was better in yield than other concentration of glucose. This yielded C-to-N ratios between 17 and 20. In our experiment, the highest biosurfactant production by P. aeruginosa F722 were observed in 5 days cultivation, containing glucose 3.0%, $NH_4$Cl 0.05%, and yeast extract 0.1% and C-to-N ratio was 20. Optimal pH and temperature for biosurfactant production were 7.0 and $35^{\circ}C$, respectively. Under the optimal culture conditions with glucose, biosurfactant production was amounted to 1.66 g/l. Velocity of biosurfactant production and strain growth increased after nitrogen depletion. The average surface tension of 30 mN/m after the 3 days of incubation under optimal culture condition was measured by ring tensionmeter.