Browse > Article
http://dx.doi.org/10.4014/jmb.1012.12026

Statistical Optimization of Medium Composition for Bacterial Cellulose Production by Gluconacetobacter hansenii UAC09 Using Coffee Cherry Husk Extract - an Agro-Industry Waste  

Rani, Mahadevaswamy Usha (Department of Food Microbiology, Central Food Technological Research Institute, Council of Scientific and Industrial Research)
Rastogi, Navin K. (Department of Food Engineering, Central Food Technological Research Institute, Council of Scientific and Industrial Research)
Anu Appaiah, K.A. (Department of Food Microbiology, Central Food Technological Research Institute, Council of Scientific and Industrial Research)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.7, 2011 , pp. 739-745 More about this Journal
Abstract
During the production of grape wine, the formation of thick leathery pellicle/bacterial cellulose (BC) at the airliquid interface was due to the bacterium, which was isolated and identified as Gluconacetobacter hansenii UAC09. Cultural conditions for bacterial cellulose production from G. hansenii UAC09 were optimized by central composite rotatable experimental design. To economize the BC production, coffee cherry husk (CCH) extract and corn steep liquor (CSL) were used as less expensive sources of carbon and nitrogen, respectively. CCH and CSL are byproducts from the coffee processing and starch processing industry, respectively. The interactions between pH (4.5-8.5), CSL (2-10%), alcohol (0.5-2%), acetic acid (0.5-2%), and water dilution rate to CCH ratio (1:1 to 1:5) were studied using response surface methodology. The optimum conditions for maximum BC production were pH (6.64), CSL (10%), alcohol (0.5%), acetic acid (1.13%), and water to CCH ratio (1:1). After 2 weeks of fermentation, the amount of BC produced was 6.24 g/l. This yield was comparable to the predicted value of 6.09 g/l. This is the first report on the optimization of the fermentation medium by RSM using CCH extract as the carbon source for BC production by G. hansenii UAC09.
Keywords
Gluconacetobacter; bacterial cellulose; RSM; coffee cherry husk; optimization; corn steep liquor;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Ochaikul, D., K. Chotirittikrai, J. Chantra, and S. Wutigornsombatkul. 2006. Studies on fermentation of Monascus purpureus TISTR 3090 with bacterial cellulose from Acetobacter xylinum TISTR 967. KMITL Sci. Technol. J. 6: 13-17.
2 Panday, A., C. R. Soccol, P. Nigam, D. Brand, R. Mohan, and S. Roussos. 2000. Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem. Eng. J. 6: 153-159.   DOI   ScienceOn
3 Ramana, K. V., A. Tomar, and L. Singh. 2000. Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J. Microbiol. Biotechnol. 16: 245-248.   DOI   ScienceOn
4 Sawhney and Singh. 2006. Introductory Practical Biochemistry. Narosa Publishing House, New Delhi, India.
5 Schramm, M. and S. Hestrin. 1954. Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J. Gen. Microbiol. 11: 123-129.   DOI   ScienceOn
6 Son, H. J., M. S. Heo, Y. G. Kim, and S. J. Lee. 2001. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnol. Appl. Biochem. 33: 1-5.   DOI   ScienceOn
7 Svensson, A., E. Nicklasson, T. Harrah, B. Panilaitis, D. L. Kaplan, M. Brittberg, and P. Gateholm. 2005. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26: 419-431.   DOI   ScienceOn
8 Matsuoka, M., T. Tsuchida, K. Matsushita, O. Adachi, and F. Yoshinaga. 1996. A synthetic medium for bacteral cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci. Biotechnol. Biochem. 60: 575-579.   DOI   ScienceOn
9 Nandini, K. E. and N. K. Rastogi. 2010. Separation and purification of lipase using reverse micellar extraction: Optimization of conditions by response surface methodology. Biotechnol. Bioprocess Eng. 15: 349-358.   DOI
10 Naritomi, T., T. Kouda, H. Yano, and F. Yoshinaga. 1998. Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J. Ferment. Bioeng. 85: 598-603.   DOI   ScienceOn
11 Nguyen, V. T., B. Flanagan, M. J. Gidley, and G. A. Dykes. 2008. Characterization of cellulose production by a Gluconacetobacter xylinus strain from kombucha. Curr. Microbiol. 57: 449-453.   DOI   ScienceOn
12 Joglekar, A. M. and A. T. May. 1987. Product excellence through design of experiments. Cereal Foods World 32: 857- 868.
13 Bressani, R. 1979. Anti-physiological factors in coffee pulp, pp. 83-88. In J. E. Braham and R. Bressani R (eds.). Coffee Pulp: Composition, Technology and Utilization, Publication 108c. International Development Research
14 Cochran, W. G. and G. M. Cox. 1957. Experimental Designs. John Wiley and Sons, NY, USA.
15 El-Saied, H., A. I. El-Diwany, A. H. Basta, N. A. Atwa, D. E. El-Ghwas. 2008. Production and characterization of economical bacterial cellulose. BioResources 3: 1196-1217.
16 Jonas, R. and L. F. Farah. 1998. Production and application of microbial cellulose. Polym. Degrad. Stability 59: 101-106.   DOI   ScienceOn
17 Khuri, A. I. and J. A. Cornell. 1987. Response Surface Design and Analysis, pp. 21-45. Marcel Dekker, NY, USA.
18 Vijayendra, S. V. N., N. K. Rastogi, T. R. Shamala, P. K. Anil Kumar, L. Kshama, and G. J. Joshi. 2007. Optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source. Indian J. Microbiol. 47: 170-175.   DOI   ScienceOn
19 Ahmad, K. M., R. Hamid, M. Ahmad, M. Z. Abdin, and S. Javed. 2010. Optimization of culture media for enhanced chitinase production from a novel strain of Stenotrophomonas maltophilia using response surface methodology. J. Microbiol. Biotechnol. 20: 1597-1602.   DOI
20 Tie, Y., L. Miao, F. Guan, G. Wang, Q. Peng, B. Li, G. Guan, and Y. Li. 2010. Optimized medium improves expression and secretion of extremely thermostable bacterial xylanase, XynB, in Kluyveromyces lactis. J. Microbiol. Biotechnol. 20: 1471- 1480.   DOI
21 Yoshino, T., T. Asakura, and K. Toda. 1996. Cellulose production by Acetobacter pasteurianus on silicone membrane. J. Ferment. Bioeng. 81: 32-36.   DOI   ScienceOn
22 Yuan, Y. V., D. E. Bone, and M. F. Carrington. 2005. Antioxidant activity of dulse extract evaluated in vitro. Food Chem. 95: 485-494.
23 Zuluaga-Vasco, J. 1989. Utilization integral de los subproducts del cafe. pp. 63-76. In S. Roussas S, R. Licona Franco, and M. Gutierrz Rojas (eds.). Proceedings of 1 Seminario International Sobre Biotechnologia en la Agroindustria Cafetalera (SIBAC), Xalapa, Mexico, ORSTOM. Montpelliar, France.
24 Venugopal, C., M. R. Rai, and K. A. A. Appaiah. 2004. Mycotypha sps strain no. AKM 1801 - Novel thermophilic fungi for alkalization of coffee husk effluent. Asian J. Microbiol. Biotechnol. Envir. Sci. 6: 525-527.
25 Usha Rani, M. and K. A. Anu Appaiah. 2010. Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk. J. Food Sci. Technol. DOI: 10.1007/s13197- 011-0401-5.
26 Usha Rani, M., K. Udayasankar, and K. A. Anu Appaiah. 2010. Properties of bacterial cellulose produced in grape medium by native isolate Gluconacetobacter sp. J. Appl. Polym. Sci. 120: 2835-2841.
27 Usha Rani, M. and K. A. Anu Appaiah. 2010. Optimization of cultural conditions for bacterial cellulose production from Gluconacetobacter hansenii UAC09. Ann. Microbiol. DOI 10.1007/s13213-011-0196-7.