• 제목/요약/키워드: optimum catalyst

검색결과 307건 처리시간 0.022초

Floating Catalyst 법에서 주입유량에 따른 탄소나노튜브의 구조 (Influence of Flow Rate of Precursor on the Structure of Carbon Nanotubes Synthesized by Floating Catalyst Method)

  • 김명수;강은진;김문걸;한링;함현식;박홍수
    • 한국응용과학기술학회지
    • /
    • 제22권1호
    • /
    • pp.35-42
    • /
    • 2005
  • Aligned multi-wall carbon nanotubes (MWNTs) were synthesized through the catalytic decomposition of hydrocarbons in a quartz tube reactor. In this study, we investigated the influence of gas flow rate of feedstock on the structure and growth rate of vertically aligned carbon nanotubes produced by the floating catalyst method. As the flow rate of feedstock increased, the nanotube diameter became smaller and the length became longer. Although the growth rate also increased with the raise of flow rate, the optimum flow rate of feedstock existed for the crystallinity of carbon nanotubes.

CuO/γ-Al2O3 흡수제/촉매를 이용한 SOx/NOx 제거 반응특성 (Reaction Characteristics of SOx/NOx Removal Using CuO/γ-Al2O3 Sorbent/Catalyst)

  • 유경선;김상돈
    • 대한환경공학회지
    • /
    • 제22권4호
    • /
    • pp.671-678
    • /
    • 2000
  • 열중량분석기와 관형 고정층 반응기에서 $CuO/{\gamma}-Al_2O_3$ 흡수제/촉매의 SOx와 NOx 동시제거 반응특성에 대하여 고찰하였다. $CuO/{\gamma}-Al_2O_3$ 흡수제/촉매의 아황산가스 제거능은 반응온도 $450^{\circ}C$와 담지량 6wt% 이상에서 담체인 알루미나의 반응참여에 의하여 급격히 증가하였다. $CuO/{\gamma}-Al_2O_3$ 흡수제/촉매의 탈질 효율은 반응온도, $370^{\circ}C$에서 최대값을 보였으며 그 이상의 온도에서는 $NH_3$가스의 산화반응에 의하여 반응온도가 증가할수록 제거효율은 감소하였다. 흡수제/촉매 표면에 sulfate가 존재하는 경우 최대 탈질 효율을 보이는 반응온도는 증가하였다. SOx와 NOx 동시 제거반응에서 $CuO/{\gamma}-Al_2O_3$ 흡수제/촉매의 NO제거 활성은 $NH_4HSO_4$와 같은 암모늄염의 생성으로 인하여 크게 감소하였다. SOx와 NOx 동시제거 반응에 있어서 최대의 탈질 효율을 보이는 반응온도는 $SO_2$ 가스의 존재로 인하여 $400^{\circ}C$로 증가하였다.

  • PDF

Durable Press 가공된 레이온직물의 물성변화에 관한 연구 (A Study on the Physical Properties of Durable Press Finished Rayon Fabrics)

  • 김희숙;김은애
    • 한국의류학회지
    • /
    • 제11권3호
    • /
    • pp.57-65
    • /
    • 1987
  • The purpose of this study was to investigate the optimum treatment [condition for the Durable press finish of viscose rayon fabrics. Three types of commercial N-methylol crosslinking agents were applied to the fabric utilizing the pad-dry-cure technique. Changes in physical properties were evaluated for the various resin and catalyst concentrations. For DMU, the effect of different catalysts, $MgCl_2$ and $NH_4Cl$, were also compared. DMU treated fabrics showed in crease recovery angle, tensile strength and tearing strength but drastic decrease in abrasion resistance. DMDHEU and MDMDHEU treated fabrics were similar in most physical properties. However, DMDHEU treated fabrics were better in crease recovery angle and stiffness, and MDMDHEU treated fabrics were better in tensile strength, tearing strength and abrasion resistance. For a given resin system, crease recovery angle, tensile strength and stiffness increased with a increase in resin concentration. Tearing strength showed very little change, while abrasion resistance was decreased significantly as the crease recovery angle was increased. For the treatment of DMU, $MgCl_2$ catalyst was much better than $NH_4Cl$ in all physical properties. When $NH_4Cl$ catalyst was used, strength reduction and discoloration were observed. As the catalyst concentration increased, crease recovery angle, stiffness were increased. Tensile strength and tearing strength were increcased than control but at high catalyst concentration, the strength were decreased and abrasion resistance was significantly lowered. DMDHEU and MDMDHEU were more sensitive to catalyst concentrations than DMU.

  • PDF

Solbitol로부터 무적제 제조용 고순도 1,4-솔비탄의 합성 (Synthesis of Highly Pure 1,4-Sorbitan for Preparation of Anti-Fogging Agent)

  • 류화열;문부현;주창식
    • 한국환경과학회지
    • /
    • 제17권3호
    • /
    • pp.351-357
    • /
    • 2008
  • In order to develope an efficient way for the synthesis of highly pure 1,4-sorbitan solution from sorbitol, some experimental studies were performed. The reaction showed first order reaction with activation energy of 118.3 KJ/mol. Color of the product solutions changed to brown with reaction temperature and reaction time. The equilibrium contents of 1,4-sorbitan increased with decrease in reaction pressure, but the content of major impurity, sorbide, showed maximum about 550 torr vacuum with $H_3PO_4$ catalyst. The reasonable catalyst configuration was 0.26 wt% PTSA and 1 wt% $H_3PO_2$ and optimum reaction temperature and pressure range was $110\sim120^{\circ}C$ and $700\sim720$ torr vacuum, respectively. At optimum reaction conditions, we could obtain white product solutions of highly pure 1,4-sorbitan with sorbide less than 10 wt%. This white product solution is advantageous for preparation of high quality span, anti-fogging agent.

광촉매 공정에 따른 이부프로펜의 분해 특성 (Degradation Properties of Ibuprofen Using Photocatalytic Process)

  • 채금화;나승민;안윤경;이세반;김지형
    • 한국환경과학회지
    • /
    • 제21권4호
    • /
    • pp.411-419
    • /
    • 2012
  • In this study, Ibuprofen (IBP) degradation by the photo catalytic process was investigated under various parameters, such as UV intensity, optimum dosage of $TiO_2$, alkalinity, temperature and pH of bulk solution. The pseudo-first order degradation rate constants were in the order of $10^{-1}$ to $10^{-4}min^{-1}$ depending on each condition. The Photocatalytic IBP degradation rate increased with an increase in the applied UV power. At high UV intensity a high rate of tri-iodide ($I_3{^-}$) ion formation was also observed. Moreover, in order to avoid the use of an excess catalyst, the optimum dosage of catalyst under the various UV intensities (30 and 40 W/L) was examined and ranged from approximately 0.1 $gL^{-1}$. The photo catalytic IBP degradation rate was changed depending on the alkalinity and temperature and pH in the aqueous solution. This study demonstrated the potential of photo catalytic IBP degradation under different conditions.

Optimization of photo-catalytic degradation of oil refinery wastewater using Box-Behnken design

  • Tetteh, Emmanuel Kweinor;Naidoo, Dushen Bisetty;Rathilal, Sudesh
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.711-717
    • /
    • 2019
  • The application of advanced oxidation for the treatment of oil refinery wastewater under UV radiation by using nanoparticles of titanium dioxide was investigated. Synthetic wastewater prepared from phenol crystals; Power Glide SAE40 motor vehicle oil and water was used. Response surface methodology (RSM) based on the Box-Behnken design was employed to design the experimental runs, optimize and study the interaction effects of the operating parameters including catalyst concentration, run time and airflow rate to maximize the degradation of oil (SOG) and phenol. The analysis of variance and the response models developed were used to evaluate the data obtained at a 95% confidence level. The use of the RSM demonstrated the graphical relationship that exists between individual factors and their interactive effects on the response, as compared to the one factor at time approach. The obtained optimum conditions of photocatalytic degradation are the catalyst concentration of 2 g/L, the run time of 30 min and the airflow rate of 1.04 L/min. Under the optimum conditions, a 68% desirability performance was obtained, representing 81% and 66% of SOG and phenol degradability, respectively. Thus, the hydrocarbon oils were readily degradable, while the phenols were more resistant to photocatalytic degradation.

천연가스의 수증기 개질에서 수성가스 전환용 충진층 반응기의 전산모사 (Packed Bed Reactor Simulation for the Water Gas Shift Reaction in the Steam Reforming of Natural Gas)

  • 이득기
    • 한국수소및신에너지학회논문집
    • /
    • 제27권5호
    • /
    • pp.494-502
    • /
    • 2016
  • A 1-dimensional heterogeneous reactor model with the gas-solid interfacial phase gradients was developed for the simulation of the packed bed reactor where the exothermic reversible water gas shift reaction for the natural gas steam reformed gas was proceeding in adiabatic mode. Experimental results obtained over the WGS catalyst, C18-HA, were best simulated when the frequency factor of the reaction rate constant was adjusted to a half the value reported over another WGS catalyst, EX-2248, having the same kinds of active components as the C18-HA. For the reactor of the inside diameter 158.4 mm and the bed length 650 mm, the optimum feeding temperature of the reformed gas was simulated to be $194^{\circ}C$, giving the lowest CO content in the product gas by 1.68 mol% on the basis of dried gas. For reactors more extended in the bed length, the possible lowest CO content in the product gas with the optimum feeding temperature of the reformed gas were suggested.

고도산화기술 공정을 이용한 페놀 제거 특성 연구 (The Study on the Phenol Removal Characteristics by using AOP Processes)

  • 김성준;곽규동;원찬희
    • 한국물환경학회지
    • /
    • 제26권2호
    • /
    • pp.303-310
    • /
    • 2010
  • Recently distinguished AOP means technology resolving organic compounds in water to harmless compounds such as $CO_2$ and $H_2O$ by creating OH radical ($OH{\cdot}$) with more powerful oxidation than general oxidants. It has merits which the 2nd pollution is not caused since it uses solar energy, sludge doesn't take place, it can be applied to high-density waste water and it oxidizes non-biodegradable organic compounds more easily. The purpose of the study was to examine about removable characteristics of phenol which was a non-biodegradable organic matter with UV/$O_3$/Catalyst processes which is one out of AOP and to present applicability of photocatalyst and the optimum conditions of treatment. The study regarded initial phenol concentration, initial pH, photocatalyst amount and flow as its conditions. As the results, the test had the highest removable efficiency (92%) when initial phenol concentration was 100 mg/L, initial pH 7, photocatalyst amount 6L and flow 1.5 mg/min. The removable efficiency was increased as much as initial phenol concentration was increased, when initial pH was 7 (neutrality), photocatalyst amount was increased and flow was increased. It was checked that the optimum HRT was 12 hours. Therefore, phenol is enough removable with UV/$O_3$/Catalyst process and its prospect in the future is expected.

상이동 촉매 기법(phase transfer catalyst)을 이용한 rose bengal 시약의 최적 조성에 관한 연구 (A Study on the Optimum Composition of Rose Bengal Reagent using Phase Transfer Catalyst)

  • 오수진;차원진;최다운;홍성욱
    • 한국콘텐츠학회논문지
    • /
    • 제18권7호
    • /
    • pp.245-252
    • /
    • 2018
  • 상이동 촉매기법을 기반으로 한 rose bengal 시약은 중성이나 염기성 용액에서 녹지 않는 난용성 염을 형성하는 칼슘을 타겟팅하는 시약으로, 물에 젖은 검체에서 잠재지문 현출시 효과적일 것으로 기대되어 최근 연구가 이루어지고 있다. 그러나 그 동안 선행연구에서는 rose bengal 시약으로 현출된 지문의 형광 특성을 관찰하지 않았을 뿐만 아니라 제시된 시약의 제조법 또한 최적 현출 조건인지 검토되지 않았다. 이에 본 연구는 rose bengal 염료의 최대방출형광을 바탕으로 rose bengal염료와 상이동촉매제(Tetrabutylammonium)의 농도를 달리하여 최적의 시약 조성을 찾고자 하였다. 그 결과 rose bengal과 상이동촉매제의 농도가 각 0.01 M: 0.008 M일 때 가장 효과적인 것을 확인할 수 있었다.

Removal of toxic hydroquinone: Comparative studies on use of iron impregnated granular activated carbon as an adsorbent and catalyst

  • Tyagi, Ankit;Das, Susmita;Srivastava, Vimal Chandra
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.474-483
    • /
    • 2019
  • In this study, iron (Fe) impregnated granular activated carbon (Fe-GAC) has been synthesized and characterized for various properties. Comparative studies have been performed for use of Fe-GAC as an adsorbent as well as a catalyst during catalytic oxidation of hydroquinone (HQ). In the batch adsorption study, effect of process parameter like initial HQ concentration ($C_o=25-1,000mg/L$), pH (2-10), contact time (t: 0-24 h), temperature (T: $15-45^{\circ}C$) and adsorbent dose (w: 5-50 g/L) have been studied. Maximum HQ adsorption efficiency of 75% was obtained at optimum parametric condition of: pH = 4, w = 40 g/L and t = 14 h. Pseudo-second order model best-fitted the HQ adsorption kinetics whereas Langmuir model best-represented the isothermal equilibrium behavior. During oxidation studies, effect of various process parameters like initial HQ concentration ($C_o:20-100mg/L$), pH (4-8), oxidant dose ($C_{H2O2}:0.4-1.6mL/L$) and catalyst dose (m: 0.5-1.5 g/L) have been optimized using Taguchi experimental design matrix. Maximum HQ removal efficiency of 83.56% was obtained at optimum condition of $C_o=100mg/L$, pH = 6, $C_{H2O2}=0.4mL/L,$ and m = 1 g/L. Overall use of Fe-GAC during catalytic oxidation seems to be a better as compared to its use an adsorbent for treatment of HQ bearing wastewater.