• 제목/요약/키워드: optimization procedure

검색결과 1,162건 처리시간 0.027초

지열시스템의 열교환기에서 원 관 내부 반경이 변하는 환형 핀의 최적화 (Optimization of an Annular Fin with Variable Pipe Inside Radius in the Heat Exchanger of Ground Source System)

  • 강형석
    • 신재생에너지
    • /
    • 제5권1호
    • /
    • pp.40-46
    • /
    • 2009
  • Optimization of a rectangular profile annular fin with variable pipe inside radius is presented. This optimum procedure is based on fixed fin height and is made by using variables separation method. The optimum heat loss, corresponding optimum fin length and optimum fin efficiency are presented as a function of pipe inside radius, fin half height, inside fluid convection characteristic number and ambient convection characteristic number. One of results shows that the optimum fin length increases linearly with increase of pipe inside radius for fixed fin height and fin base radius.

  • PDF

An Accelerated Simulated Annealing Method for B-spline Curve Fitting to Strip-shaped Scattered Points

  • Javidrad, Farhad
    • International Journal of CAD/CAM
    • /
    • 제12권1호
    • /
    • pp.9-19
    • /
    • 2012
  • Generation of optimum planar B-spline curve in terms of minimum deviation and required fairness to approximate a target shape defined by a strip-shaped unorganized 2D point cloud is studied. It is proposed to use the location of control points as variables within the geometric optimization framework of point distance minimization. An adaptive simulated annealing heuristic optimization algorithm is developed to iteratively update an initial approximate curve towards the target shape. The new implementation comprises an adaptive cooling procedure in which the temperature change is adaptively dependent on the objective function evolution. It is shown that the proposed method results in an improved convergence speed when compared to the standard simulated annealing method. A couple of examples are included to show the applicability of the proposed method in the surface model reconstruction directly from point cloud data.

Simultaneous Optimization of Multiple Responses Using Weighted Desirability Function

  • Park, Sung-Hyun;Park, Jun-Oh
    • 품질경영학회지
    • /
    • 제25권1호
    • /
    • pp.56-68
    • /
    • 1997
  • The object of multiresponse optimization is to determine conditions on hte independent variables that lead to optimal or nearly optimal values of the response variables. Derringer and Suich (1980) extended Harrington's (1965) procedure by introducing more general transformations of the response into desirability functions. The core of the desirability a, pp.oach condenses a multivariate optimization into a univariate one. But because of the subjective nature of this a, pp.oach, inexperience on the part of the user in assessing a product's desirability value may lead to inaccurate results. To compensate for this defect, a weighted desirability function is introduced which takes into consideration the vriances of the responses.

  • PDF

Optimum design of axially symmetric cylindrical reinforced concrete walls

  • Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • 제51권3호
    • /
    • pp.361-375
    • /
    • 2014
  • The main aim of this paper is to investigate the relationship between thickness and height of the axially symmetric cylindrical reinforced concrete (RC) walls by the help of a meta-heuristic optimization procedure. The material cost of the wall which includes concrete, reinforcement and formwork, was chosen as objective function of the optimization problem. The wall thickness, compressive strength of concrete and diameter of reinforcement bars were defined as design variables and tank volume, radius and height of the wall, loading condition and unit cost of material were defined as design constants. Numerical analyses of the wall were conducted by using superposition method (SPM) considering ACI 318-Building code requirements for structural concrete. The optimum wall thickness-height relationship was investigated under three main cases related with compressive strength of concrete and density of the stored liquid. According to the results, the proposed method is effective on finding the optimum design with minimum cost.

Parameters identification of fractional models of viscoelastic dampers and fluids

  • Lewandowski, Roman;Slowik, Mieczyslaw;Przychodzki, Maciej
    • Structural Engineering and Mechanics
    • /
    • 제63권2호
    • /
    • pp.181-193
    • /
    • 2017
  • An identification method for determination of the parameters of the rheological models of dampers made of viscoelastic material is presented. The models have two, three or four parameters and the model equations of motion contain derivatives of the fractional order. The results of dynamical experiments are approximated using the trigonometric function in the first part of the procedure while the model parameters are determined as the solution to an appropriately defined optimization problem. The particle swarm optimization method is used to solve the optimization problem. The validity and effectiveness of the suggested identification method have been tested using artificial data and a set of real experimental data describing the dynamic behavior of damper and a fluid frequently used in dampers. The influence of a range of excitation frequencies used in experiments on results of identification is also discussed.

3차원 설계 영역에서의 요소 연결 매개법을 이용한 위상 최적 설계 (Topology Optimization Using the Element Connectivity Parameterization Method in Three Dimensional Design Domain)

  • 윤길호;김윤영;정영수
    • 대한기계학회논문집A
    • /
    • 제29권7호
    • /
    • pp.990-997
    • /
    • 2005
  • The objective of this paper is to present the element connectivity parameterization (ECP) fur three dimensional problems. In the ECP method, a continuum structure is viewed as discretized finite elements connected by zero-length elastic links whose stiffness values control the degree of inter-element connectivity. The ECP method can effectively avoid the formation of the low-density unstable elements. These elements appear when the standard element density method is used for geometrical nonlinear problems. In this paper, this ECP method developed fur two-dimensional problems is expanded to the design of three-dimensional geometrical nonlinear structures. Among others, the automatic procedure converting standard finite element models to the models suitable for the ECP approach is developed and applied for optimization problems defined on general three-dimensional design domains.

열전달성능 향상을 위한 엇갈린 딤플 유로의 최적설계 (DESIGN OPTIMIZATION OF A STAGGERED DIMPLED CHANNEL TO ENHANCE TURBULENT HEAT TRANSFER)

  • 신동윤;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.159-162
    • /
    • 2007
  • This study presents a numerical procedure to optimize the shape of a staggered dimpled surface to enhance the turbulent heat transfer in a rectangular channel. A optimization technique based on neural network is used with Reynolds-averaged Navier-Stakes analysis of the fluid flow and heat transfer with Shear Stress Transport turbulence model. The dimple depth-to-dimple print diameter ratio, channel height-to-dimple print diameter ratio, and dimple print diameter-to-pitch ratio are chosen as design variables. The objective function is defined as a linear combination of terms related to heat transfer and friction loss with a weighting factor. Latin Hypercube Sampling is used to determine the training points as a mean of the Design of Experiment. Optimal values of the design variables were obtained in a range of the weighting factor.

  • PDF

소형펀치 시험과 역해석에 의한 재료의 유동응력 결정 (Inverse Analysis Approach to Flow Stress Evaluation by Small Punch Test)

  • 천진식
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1753-1762
    • /
    • 2000
  • An inverse method is presented to obtain material's flow properties by using small punch test. This procedure employs, as the objective function of inverse analysis, the balance of measured load-di splacement response and calculated one during deformation. In order to guarantee convergence to global minimum, simulated annealing method was adopted to optimize the current objective function. In addition, artificial neural network was used to predict the load-displacement response under given material parameters which is the most time consuming and limits applications of global optimization methods to these kinds of problems. By implementing the simulated annealing for optimization along with calculating load-displacement curve by neural network, material parameters were identified irrespective of initial values within very short time for simulated test data. We also tested the present method for error-containing experimental data and showed that the flow properties of material were well predicted.

형상최적화 기법을 이용한 초고강도강판 성형용 프레스 금형의 구조설계 가이드라인 (Design Guideline for Press Tool Structure of Ultra-high Strength Steel Part with Shape Optimization Technique)

  • 강경훈;곽정환;배상범;김세호
    • 소성∙가공
    • /
    • 제26권6호
    • /
    • pp.372-377
    • /
    • 2017
  • In this paper, an effective design procedure was proposed to design the rib of die structure for auto-body member with ultra-high strength steel (UHSS) having ultimate tensile strength (UTS) of 1.5 GPa. From analysis results of the die structure, structural safety of the die was evaluated with information such as displacement and von-Mises stress. It was concluded that the casting part could be designed in order to reduce tool deformation. A design guideline of the die structure was proposed, especially for the rib structure in the casting part with an optimization scheme and local reinforcement concept. Simulation result following the design guideline fully explained that stability of the tool structure could be obtained simultaneously with weight minimization.

Hermite 곡선을 이용한 자동차 엔진 캠 형상의 최적 설계에 관한 연구 (A Study on the Optimal Design of Automotive Cam Profiles using Hermite Curve)

  • 김도중;김원현
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.129-140
    • /
    • 1998
  • A numerical method is proposed to optimize automotive cam profiles. An acceleration curve of a cam follower motion is described by Hermite spline curves. Because of the intrinsic characteristics of the Hermite curve, it is possible to design an acceleration curve with arbitrary shape. Design variables in the optimization problem are location of control points which define the acceleration curve. Objective function includes dynamic performances as well as kinematic properties of a valve train. Similar optimization procedure was also performed using Polydyne cam profile synthesis method. Optimized profiles using the Hermite curve are proved to be superior to those using the Polydyne method.

  • PDF