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Simultaneous Optimization of Multiple Responses
Using Weighted Desirability Function *

Sung Hyun Park ¢ Jun Oh Park

Dept. of Computer Science and Statistics, Seoul National University

Abstract

The object of multiresponse optimization is to determine conditions on the
independent variables that lead to optimal or nearly optimal values of the response
variables. Derringer and Suich (1980) extended Harrington’'s (1965) procedure by
introducing more general transformations of the response into desirability
functions. The <core of the desirability approach condenses a multivariate
optimization into a univariate one. But because of the subjective nature of this
approach, inexperience on the part of the user in assessing a product’s desirability
value may lead to inaccurate results. To compensate for this defect, a weighted
desirability function is introduced which takes into consideration the variances of
the responses.

1. Introduction

In many experimental situations, it is quite common that several responses,
rather than a single response, are measured from each setting of a group of
input variables. The analysis of data from a multiresponse experiment requires
careful consideration of the multivariate nature of the data. In other words, the
response variables should not be investigated individually and independently of one
another. Interrelationship that may exist among the responses can render
univariate investigation meaningless. For example, if we desire to optimize several
response functions simultaneously, it would be futile to obtain separate individual

* This study was partially supported by Korean Ministry of Education through Research Fund,
BSRI-96-1415.
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optima. So in a multivariate situation, the optimization problem is more complex
than in the single response case. The main difficulty stems from the fact that two
or more response variables are under investigation simultaneously, and the
meaning of optimum becomes unclear since there is no unique way to order
multivariate values of a multiresponse function. Furthermore, the optimal condition
for one response may be far from optimal or even physically impractical conditions
for the remaining responses.

The object of the multiresponse optimization is to determine conditions on the
input variables that lead to optimal or nearly optimal values of the response
variables. In an effort to find optimal conditions on several responses, the
desirability function approach will be introduced in the next section. The other
methods are briefly outlined as follows.

(1) Graphical superimposition method

In case there are only two or three input variables, this method is not only easy
to understand and use, but also simple and straightforward. First of all, for each
response, a response contour is obtained by fitting, in general, the second-order
response model. Then by superimposition of response contours, we arrive at
optimal conditions. Even though this procedure is practically very useful, it is
difficult to apply when the number of input variables exceeds three, and to
identify one set of conditions or one point in the experimental region as being
optimal.

(2) Primary and secondary function

Myers and Carter (1973) introduced an algorithm for determining conditions on
the input variables that maximize or minimize a primary response function subject
to having an equality constant on a secondary response function. In other words,
the secondary response function imposes certain constraints on the optimization of
the primary response function. Biles (1975) extended this approach to include
several secondary response functions within specified ranges. Biles's procedure
employs a modification of the method of steepest ascent described by Box and
Wilson (1951). In many cases, it is necessary to optimize the responses
simultaneously rather than to optimize one response with the other constraints.
Therefore, this method may be adapted to the restricted cases. Recently Vining
and Myers (1990) proposed a dual response approach which combines Taguchi and
response surface methods. Lin and Tu (1995) developed Vining and Myers's
approach using the MSE(Mean Squared Error) criterion.
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(3) Distance function approach

Khuri and Conlon (1981) presented several distance functions that measure the
overall closeness of the response functions to achieving their respective optimal
values at the same set of operating conditions. Multiresponse optimization is thus
reduced to minimizing an appropriate distance function with respect to the input
variables. This approach permits the user to account for the variances and
covariances of the estimated responses and for the random error variation
associated with the estimated ideal optimum.

(4) Py and Py measures

Park, Kwon, and Kim (1995) studied simultaneous optimization of multiple responses

for robust design. They suggested Py and Py measures. The Pymeasure can be

used without a prior knowledge about the estimated mean responses. The Py measure
is reasonable to minimize the variances when we have a prior knowledge about
the mean responses. Py is simple and easy to compute. Py also allows the
user to make a decision on the range of the estimated mean responses. However,

because of inappropriate decision on the range of mean responses, it may lead to
inaccurate results.

2. Desirability function approach
2.1 Desirability function

Suppose each of the £ response variables is related to the p independent

variables by

vi=flx;, 20, %)+ e, 1=1,2,-k

where f; denotes the functional relationship between y; and X1, X, 0, x If we
make the usual assumption that E(e;) =0 and Var(e) = 6% for each 7, then

E(y)=n;=fx,%0,--,x,), i=1,2,-,k, where 7; is represented by second

order models within a certain region of interest in general.
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The desirability function involves transformation of each estimated response

variable y.= 7)) to a desirability value d, where 0<d;<1. The value of d,

increases as the desirability of the corresponding response increases. The

individual desirabilities are then combined using the geometric mean G,

1
G=(dy Xdyx-xdy) *.

When £k is large, the variation of d; has much influence on G. So Park (1981)

suggested harmonic mean H,

1,1 1" '
d T d, T, 2 1le

=] 151

This single value of G or H gives the overall assessment of the desirability of

the combined response levels. If any d;=0 (that is, if one of the response

variables is unacceptable), then G or H is ( (that is, the overall product is
unacceptable).

2.2 One-sided transformation (maximization of ;)

Let d; be the th individual desirability function, which is usually defined by

0 J/’\,‘Syi.
~ r
Vi™ Vis -~ *
di': *t : y,-.sy,-syi (1)
Yi ™ Vis
1 yi2y;

where y; is the minimum acceptable value of 5)\, and y; is the satisfactory

value of y; for i=1,2,-,k and 7 is an arbitrary positive constant. A large
value of 7 would be specified if it were desirable for the value of 3/)\, to increase

rapidly above y;.. On the other hand, a small value of # would be specified if

having values of 3/1\, considerably above y;, were not of critical importance. For



60 E2A 93 A A28 A1Z 1997d 3¥

this reason the desirability function approach permits the user to make subjective
judgements on the importance of each response. This 1is attractive to an
experienced user. However, because of the subjective nature of the desirability
approach, mnexperience on the part of the user in assessing a product’s desirability
value may lead to inaccurate results. That is, the choice of #» wvalue contains
user’'s subjective judgements and an inappropriate #» value may result in the
improper optimum condition,

Minimization of y; is equivalent to maximization of — y,;. Therefore, minimi-

zation of 371 is not elaborated here.

d;

Vie 3;7
< Figure 1 > Transformation (1) for Various Values of 7»
2.3 Two-sided transformation

When the response variable v, has both a minimum acceptable value and a

maximum acceptable value, the individual desirability function is defined by

-~ s
2 y,.] ya<yi<c

—ee—
[ —

Ci™ YVis
N * 4

di={| 2220 | o< isy) @
C;—Y¥;

0 Vi<yu, OF Y2
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where c¢; is the target value for the th response, and § and ¢ are arbitrary
positive constants. In this situation, v, is the minimum acceptable value of 3/1\,

and y; is the maximum acceptable value. The values of § and ¢ in the

two-sided transformation play the same role as that of 7 does in the one-sided

transformation.

< Figure 2 > Transformation (2) for Various Values of s and ¢

Since y; is a continuous function of the x;,i=1,2,-,p, both G and H are
continuous functions of d;’s, respectively. Therefore, it follows that both G and
H are continuous of the x;,i=1,2,-:-,p. As a result, existing univariate search

techniques can be used to maximize G or H over the independent variables

domain.

3. Weighted desirability function approach

The desirability functions (1) and (2) assume that, when ;. and y; are
determined by the user, each y; has the same degree of importance whether ¥;’s
have different degrees of importance or different variances. Such assumption is not
practical in real situations. Therefore, we propose here the weighted desirability
function
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1
WG=(dlw‘xd2w2><-~~><dkw‘)k, wi=k, w; > 0, i=1,2-k

1=

where w; is the weight for y;, and the average of w;’s is 1. If y;'s are all
equally important or they have equal variances, we may use ;=1 for each ¥;.
If we have no prior information for the importance of each 3y;, a good choice of

w; is to make w; proportional to the coefficient of variation of v;,

cv, =I5B

y;
where }i is the sample mean of the tth response, and \/—Zﬁb:Z is the estimate
of ©0; obtained from fitting a regression model. We may say that WG
redistributes each weight in G according to each CV,. Note that WG
decreases as its weight w; increases since d; varies in [0, 1]. If any d;,=0, WG
is 0 like G. That is, if one of the response is unacceptable, then the overall

product 1s unacceptable.
Each weighted desirability function is in one-sided transformation

[ 0 .;\isyi,..
-~ rw,
dz.wi = _X:__y’_"' Vu< ;,Sy: (3)
Vi~ YVix
1 iz

and in two-sided transformation

Sw;

>

Yi™ Yis ~
AN 4L LSy c
[Ci_yi* YirS ViS¢
ws -~ * tw;
d=| 22| =Sy “@
C;i— Vi

0 Pi<ys, OF Y=y,
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The constants 7,8 and { play the same role as those of G.

The performance of this weighted desirability function is illustrated in the
following example.

4. Example

In the development of a tire tread compound, the optimal combination of three

ingredient(independent) variables - hydrated silica level x,, silane coupling agent

level x,, and sulfur level x3 - was sought. The properties to be optimized and

constraint levels were as follows.

PICO abrasion Index, ¥, 120 <y, 1. =120
200% Modulus, vy 1000 <y, vo. = 1000
Elongation at Break, y; 400 <y; <600 v3.=400 ;=600

Hardness, vy, 60 <yy <75 V4. =60 yi=175
For y; and y,, the one-sided transformation given by (3) was used and for vy,
and y,, the two-sided transformation given by (4) was used.

In the example given in Derringer and Suich(1980), they employed the rotatable
central composite design with six center points in three variables. <Table 1>
shows the data which were then fitted to the second degree polynomial models,

Bi= byt N bt D H b i=12.3.4

The resultant fitted equations are

y1= 139.12+16.49%, + 17.88x, + 10.91x3 — 4.01x5— 3.45x5— 1.57%

+5.13x1x2+ 7.13x1x3 +7.88x2x3

yp= 1261.11+268.15x; + 246.50x, + 139.48x; — 83.55x7— 124.79x3+ 199. 173
+69.38x,x, + 94.13x; x5 + 104. 38x9x5
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y3= 400.38 —99.67x; —31.40x,— 73.92x3+ 7.93x+ 17.31x5+ 0.43x%

+8.75x1x; +6.25x, 23 + 1.25x9x3

yy= 68.91—1.41x, +4.32x,+ 1.63x3 + 1.56x%+0.06x5— 0.32x5

—1.63x22 +0.13x,x3 — 0.25x5x3.

< Table 1> Experimental Design

X1 X2 X3 W ¥ Y3 Y4
-1 -1 1 102 900 470 67.5

1 -1 -1 120 860 410 65
-1 1 -1 117 800 570 775

1 1 1 198 2294 240 74.5
-1 -1 -1 103 490 640 62.5

1 -1 1 132 1289 270 67
-1 1 1 132 1270 410 78

1 1 -1 139 1090 380 70
-1.633 0 0 102 770 590 76

1.633 0 0 154 1690 260 70

0 -1.633 0 96 700 520 63

0 1.633 0 163 1540 380 ™

0 0 -1633 116 2184 520 65

0 0 1.633 153 1784 290 71

0 0 0 133 1300 380 70

0 0 0 133 1300 380 68.5

0 0 0 140 1145 430 63

0 0 0 142 1090 430 68

0 0 0 145 1260 390 69

0 0 0 142 1344 390 70

The y;,V MSE;, CV,;x100, and w; for each y, are given in <Table 2>.

< Table 2 > Each weight proportional to CV

i v; MSE; CV,;x100 | w;
1 133.1 561 422 0.45
2 1255.0 328.69 26.19 2.82
3 4175 20.55 492 053
4 69.8 127 1.82 0.20
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We use the grid-search method to find an optimum formulation. <Table 3>
shows the difference in the optimum condition and the estimated value of each

response between G and WG.

< Table 3 > Different optimal conditions under G and WG

G

WG

%,=-0.050 x,=0.145 x3=-0.868

x,=-0.158  x,=0.437 x3=-0.879

120< »; 1295 130.38
1000< v, 1300.0 1300.02
400 <y,3<600 465.7 471.00
60 <v4<75 68.0 69.62

Figures 3-6 show the performance of the d,-w’,

and s=t=1 in (3) and (4).

wy

d,

1=1, 2, 3, 4. We assume that 7=1

T > N
170

< Figure 3 > The performance of d,;
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w1

dz

T T — Y2

1000 1300

< Figure 4 > The performance of d»

v

¥3
400 500 600

< Figure 5 > The performance of d
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Wy

da
T
14
wy
— 0.20

T T T - Y4

€0 €67.5 75

< Figure 6 > The performance of d,

5. Conclusion

Since the desirability function condenses a multivariate optimization problem into

a univariate one and WG is continuous of the x;, i=1,2,',p» as G is, we have

only to consider the univariate techniques to find the maximum of weighted
desirability function. In this paper, the grid-search method was used to find the
maximum value.

We can see the different optimum conditions between WG and G. The estimate

value of the response of which CV; is large is moved to the desirable point

(maximum value in one-sided transformation or target value in two-sided
transformation) in WG. To the contrary, the estimate value of the response whose

CV,; is small is moved to the opposite direction. Therefore, if the response
whose CV,; is relatively large is more important than others, it is useful to

employ WG instead of using G.
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