• Title/Summary/Keyword: optimization of enzyme production

Search Result 136, Processing Time 0.036 seconds

Optimal Production of N-acetyl-$\beta$-D-glucosamine Using Chitinolytic Enzyme (Chitinolytic Enzyme을 이용한 N-acetyl-$\beta$-D-glucosamine의 최적생산)

  • 이천우;이은영장상목김광
    • KSBB Journal
    • /
    • v.11 no.6
    • /
    • pp.696-703
    • /
    • 1996
  • The bacterium Serratia marcescens QM Bl466 produces selectively large amount of chitinolytic enzymes(about 1mg/L medium). Enzymatic hydrolysis of chitin to N-acelyl-${\beta}$-D-glucosamine(NAG) is performed by a system consisting of two hydrolases : chitinase and chilobiase. Objectives of this study included optimization of a microbial host by using chitin particles for chitinase/chitobiase production and secretion and also development of batch fermentation system for high cell density cultivalion of S. marcescens QM B1466. Also, the influence of chitin source and carboxymethyl(CM) chitin on chitinase/chitobiase production and NAG production was investigated. When carboxymethyl chitin was substituted for colloidal and practical grade chitin, the chitinase activity was increased about 7∼10U/mL. In this case, the ratio of chitinase/chitobiase was 30.03U/3.44U(9:1). The highest amounts of NAG(3.0g/L) was obtained.

  • PDF

Isolation and Culture Medium Optimization for Thermostable Extracellular α-Amylase Production by Thermophilic Alicyclobacillus acidocaldarius (세포외 고온성 α-아밀라제를 생산하는 Alicyclobacillus acidocaldarius 의 분리 및 효소생산용 최적 배양 조건)

  • Kumar, G. Satheesh;Chandra, M. Subhosh;Mallaiah, K.V.;Sreenivasulu, P.;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.22 no.4
    • /
    • pp.472-477
    • /
    • 2012
  • A thermophilic $Alicyclobacillus$ $acidocaldarius$, which produces thermostable ${\alpha}$-amylase, was isolated from the hot water effluent of a boiled rice mill near Tirupati, Andhra Pradesh, India. The effect of different culture conditions on the growth and production of extracellular ${\alpha}$-amylase by thermophilic $A.$ $acidocaldarius$ was investigated in laboratory scale. The results showed that the optimum conditions for the production of ${\alpha}$-amylase are a temperature of $60^{\circ}C$, pH of 6.0, and medium starch concentration of 1.0%, and yeast extract and tryptone of 0.2%. Surfactants, like Tween-20 and SDS, up to 0.02%, were found to increase the bacterial growth and enzymes. Further increase in their concentration resulted in significantly decreased enzyme production.

Optimization of Cyclodextrin Glucanotransferase Immobilization on Amberlite IRA-900 (Amberlite IRA-900을 이용한 cyclodextrin glucotransferase의 최적 고정화)

  • Seo, Hyo-Jin;Jung, Il-Hyong;Nam, Soo-Wan;Kim, Byung-Woo;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.794-799
    • /
    • 2004
  • Cyclodextrin glucanotransferase (CGTase) produced by Bacillus subtilis NAl/pKBl was used for the production of cyclodextrin (CD). The enzyme was purified by ion exchange and gel filtration chromatography. The purified enzyme exhibited its maximum activity in the pH range of 6.0 to 7.0 and temperature range of 60 to $70^{\circ}C$. Immobilization of purified CGTase was carried out with various immobilization matrices. Amberlite IRA-900, a strong basic anion exchange resin, showed the highest immobilization ability (38 units per gram resin). Optimal pH and temperature for enzymatic reaction of the immobilized CGTase were pH 6.0 and 60t. The activity of immobilized CGTase maintained more than a month and could be reused for a month in a continuous enzyme reactor for the production of CD.

Enzyme Production of A Protease-producing Strain, Bacillus sp SH-8 Isolated from Insect-eating Plant (식충식물로부터 Protease를 생산하는 Bacillus sp. SH-8의 분리와 효소 생산성)

  • Yoon, Ki-Hong;Lee, Mi-Sung;Park, Bueng-Wan;Park, Yong-Ha;Kim, Hong-Ik;Kim, Jeong-Hyeon;Kim, Moon-Sook
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.4
    • /
    • pp.323-328
    • /
    • 2006
  • A bacterium producing the extracellular protease was isolated from insect-eating plant and has been identified as a member of the genus Bacillus based on partial 165 rRNA sequences. In order to develop the medium composition, effects of ingredients including nitrogen sources, carbon source, metal ions and phosphate were examined for protease production of the isolate, SH-8. Soluble starch increased the protease productivity, while glucose repressed it. Yeast extract was effective nitrogen source for enzyme production, but the pretense production of Bacillus sp. SH-8 was reduced by large amount of yeast extract. The calcium was found to induce pretense activity as well as protease productivity. However, cell growth and enzyme production was completely inhibited by divalent ions such as $Zn^{2+}$, $Cu^{2+}$, $Co^{2+}$ and $Mn^{2+}$. The maximum protease productivity was reached 435 unit/ml in the optimized medium consisting of soluble starch (2%), yeast extract (0.3%), $CaCl_2$ (0.3%), $K_2HPO_4$ (0.01%) and $KH_2PO_4$ (0.01%). The pretense activity of culture filtrate was dramatically decreased after incubation for 26 h.

Optimization of Medium to Improve Protease Production Using Response Surface Methodology by Bacillus amyloliquefaciens SRCM115785 (반응표면분석법을 이용한 Bacillus amyloliquefaciens SRCM115785의 protease 활성증가를 위한 배지 최적화)

  • Yang, Hee Gun;Ha, Gwangsu;Ryu, Myeong Seon;Park, Se Won;Jeong, Ho Jin;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.761-770
    • /
    • 2021
  • In this study, the optimal medium composition for enhancing protease production was established by the Bacillus strain isolated from Makgeolli, a traditional fermented food, using the response surface methodology. B. amyloliquefaciens SRCM115785 was selected as the protease producer by productivity analysis and identified by 16S rRNA gene sequencing. Plackett-Burman design (PBD) was introduced to analyze the effect of each component on protease production among the 11 selected medium components. As a result, glucose, yeast extract, and beef extract were finally selected as factors for enhancing protease production. Central composite design (CCD) analysis was designed as a method to determine the optimal concentration of each component for protease production and the concentration of each medium composition for maximum protease production was predicted to glucose 6.75 g/l, yeast extract 12.42 g/l and beef extract 17.48 g/l. The suitability of the experimental model was proved using ANOVA analysis and as a result of quantitative analysis to prove this, the amount of increase was 230.47% compared to the LB medium used as a control. Through this study, the optimization of medium composition for enhancing protease production was established, and based on this, it is expected that it can be efficient use of protease as an industrial enzyme.

Complete In Vitro Conversion of n-Xylose to Xylitol by Coupling Xylose Reductase and Formate Dehydrogenase

  • Jang, Sung-Hwan;Kang, Heui-Yun;Kim, Geun-Joong;Seo, Jin-Ho;Ryu, Yeon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.501-508
    • /
    • 2003
  • Artificial coupling of one enzyme with another can provide an efficient means for the production of industrially important chemicals. Xylose reductase has been recently discovered to be useful in the reductive production of xylitol. However, a limitation of its in vitro or in vivo use is the regeneration of the cofactor NAD(P)H in the enzyme activity. In the present study, an efficient process for the production of xylitol from D-xylose was established by coupling two enzymes. A NADH-dependent xylose reductase (XR) from Pichia stipitis catalyzed the reduction of xylose with a stoichiometric consumption of NADH, and the resulting cofactor $NAD^+$ was continuously re-reduced by formate dehydrogenase (FDH) for regeneration. Using simple kinetic analyses as tools for process optimization, suitable conditions for the performance and yield of the coupled reaction were established. The optimal reaction temperature and pH were determined to be about $30^{\circ}C$ and 7.0, respectively. Formate, as a substrate of FDH, affected the yield and cofactor regeneration, and was, therefore, adjusted to a concentration of 20 mM. When the total activity of FDH was about 1.8-fold higher than that of XR, the performance was better than that by any other activity ratios. As expected, there were no distinct differences in the conversion yields of reactions, when supplied with the oxidized form $NAD^+$ instead of the reduced form NADH, as a starting cofactor for regeneration. Under these conditions, a complete conversion (>99%) could be readily obtained from a small-scale batch reaction.

Enhancement of β-cyclodextrin Production and Fabrication of Edible Antimicrobial Films Incorporated with Clove Essential Oil/β-cyclodextrin Inclusion Complex

  • Farahat, Mohamed G.
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.12-23
    • /
    • 2020
  • Edible films containing antimicrobial agents can be used as safe alternatives to preserve food products. Essential oils are well-recognized antimicrobials. However, their low water solubility, volatility and high sensitivity to oxygen and light limit their application in food preservation. These limitations could be overcome by embedding these essential oils in complexed product matrices exploiting the encapsulation efficiency of β-cyclodextrin. This study focused on the maximization of β-cyclodextrin production using cyclodextrin glucanotransferase (CGTase) and the evaluation of its encapsulation efficacy to fabricate edible antimicrobial films. Response surface methodology (RSM) was used to optimize CGTase production by Brevibacillus brevis AMI-2 isolated from mangrove sediments. This enzyme was partially purified using a starch adsorption method and entrapped in calcium alginate. Cyclodextrin produced by the immobilized enzyme was then confirmed using high performance thin layer chromatography, and its encapsulation efficiency was investigated. The clove oil/β-cyclodextrin inclusion complexes were prepared using the coprecipitation method, and incorporated into chitosan films, and subjected to antimicrobial testing. Results revealed that β-cyclodextrin was produced as a major product of the enzymatic reaction. In addition, the incorporation of clove oil/β-cyclodextrin inclusion complexes significantly increased the antimicrobial activity of chitosan films against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella Typhimurium, Escherichia coli, and Candida albicans. In conclusion, B. brevis AMI-2 is a promising source for CGTase to synthesize β-cyclodextrin with considerable encapsulation efficiency. Further, the obtained results suggest that chitosan films containing clove oils encapsulated in β-cyclodextrin could serve as edible antimicrobial food-packaging materials to combat microbial contamination.

Optimization of Cellulase Production in Batch Fermentation by Trichoderma reesei

  • Yu, Xiao-Bin;Nam, Joo-Heon;Yun, Hyun-Shik;Koo, Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.44-47
    • /
    • 1998
  • Maximum cellulase production was sought by comparing the activities of the cellulases produced by different Trichoderma reesei strains and Aspergillus niger. Trichoderma reesei Rut-C30 showed higher cellulase activity than other Trichoderma reesei stains and Aspergillus niger that was isolated from soil. By optimizing the cultivation conditions during shake flask culture, higher cellulase production could be achieved. The FP(filter paper) activity of 3.7U/ml and CMCase (Carboxymethylcellulase) activity of 60U/ml were obtained from shake flask culture. When it was grown in 2.5L fermentor, where pH and DO levels are controlled, the enzyme activities were 133.35U/ml (CMCase) and 11.67U/ml(FP), respectively. Ammonium sulfate precipitation method was used to recover enzymes from fermentation broth. The dried cellulase powder showed 3074.9U/g of CMCase activity and 166.7U/g of FP activity with 83.5% CMCase recovery.

  • PDF

Optimization of Culture Conditions for D-Ribose Production by Transketolase-Deficient Bacillus subtilis JY1

  • Park, Yong-Cheol;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.665-672
    • /
    • 2004
  • D-Ribose is a five-carbon sugar used for the commercial synthesis of riboflavin, antiviral agents, and flavor enhancers. Batch fermentations with transketolase-deficient B. subtilis JY1 were carried out to optimize the production of D-ribose from xylose. The best results for the fermentation were obtained with a temperature of $37^{\circ}C$ and an initial pH of 7.0. Among various sugars and sugar alcohols tested, glucose and sucrose were found to be the most effective for both cell growth and D-ribose production. The addition of 15 g/l xylose and 15 g/l glucose improved the fermentation performance, presumably due to the adequate supply of ATP in the xylose metabolism from D-xylulose to D-xylulose-5-phosphate. A batch culture in a 3.7-1 jar fermentor with 14.9 g/l xylose and 13.1 g/l glucose resulted in 10.1 g/l D-ribose concentration with a yield of 0.62 g D-ribose/g sugar consumed, and 0.25 g/l-h of productivity. Furthermore, the sugar utilization profile, indicating the simultaneous consumption of xylose and glucose, and respiratory parameters for the glucose and sucrose media suggested that the transketolase-deficient B. subtilis JY1 lost the glucose-specific enzyme II of the phosphoenolpyruvate transferase system.

Process Optimization of Peptides Production from Protein of Crab (Ovalipes punctatus) and Its Antioxidant Capacity Analysis (꽃게(Ovalipes punctatus) 단백질 유래 항산화 기능성 펩타이드 제조 최적공정 확립 및 이화학적 특성)

  • Ha, Yoo Jin;Kim, Do Hyun;Lee, Byung Hee;Yoo, Sun Kyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.367-377
    • /
    • 2018
  • Swimming crab(Ovalipes punctatus) is produced in Korea and utilized as semi-processed food at streamed cooked state. Recently, protein hydrolysates have been known as having function such as antioxidant, suppression of hypertension, immunodulatory, alleviation of pain, and antimicrobial activity. This research was investigated to find the functional antioxidant from crab hydrolysates. To fine optimal protease enzyme, alcalase, bromelain, flavourzyme, neutrase, papain, and protamex were selected to evaluate the DPPH radical scavenging activity and finally bromelain to show the best activity was selected. The molecular weight of bromelain hydrolysates were distributed with range from 500 to 3,200 Da and 7 different molecules or more. The amino acids related to antioxidant capacity was about 42.54%. The processes optimization study used was the response surface methodology. The ranges of processes were the reaction temperature of 40 to $60^{\circ}C$, pH 6 to 8, and enzyme concentration 1 to 3%(w/v). As a result, the optimization of process was determined at temperature of $55^{\circ}C$, pH of 6.5, and enzyme concentration of 3%(w/v). In these conditions, degree of hydrolysates were maximum 71.60%. Therefore, we expect that those products are useful as functional food ingredients.