Browse > Article
http://dx.doi.org/10.4014/mbl.1909.09016

Enhancement of β-cyclodextrin Production and Fabrication of Edible Antimicrobial Films Incorporated with Clove Essential Oil/β-cyclodextrin Inclusion Complex  

Farahat, Mohamed G. (Botany and Microbiology Department, Faculty of Science, Cairo University)
Publication Information
Microbiology and Biotechnology Letters / v.48, no.1, 2020 , pp. 12-23 More about this Journal
Abstract
Edible films containing antimicrobial agents can be used as safe alternatives to preserve food products. Essential oils are well-recognized antimicrobials. However, their low water solubility, volatility and high sensitivity to oxygen and light limit their application in food preservation. These limitations could be overcome by embedding these essential oils in complexed product matrices exploiting the encapsulation efficiency of β-cyclodextrin. This study focused on the maximization of β-cyclodextrin production using cyclodextrin glucanotransferase (CGTase) and the evaluation of its encapsulation efficacy to fabricate edible antimicrobial films. Response surface methodology (RSM) was used to optimize CGTase production by Brevibacillus brevis AMI-2 isolated from mangrove sediments. This enzyme was partially purified using a starch adsorption method and entrapped in calcium alginate. Cyclodextrin produced by the immobilized enzyme was then confirmed using high performance thin layer chromatography, and its encapsulation efficiency was investigated. The clove oil/β-cyclodextrin inclusion complexes were prepared using the coprecipitation method, and incorporated into chitosan films, and subjected to antimicrobial testing. Results revealed that β-cyclodextrin was produced as a major product of the enzymatic reaction. In addition, the incorporation of clove oil/β-cyclodextrin inclusion complexes significantly increased the antimicrobial activity of chitosan films against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella Typhimurium, Escherichia coli, and Candida albicans. In conclusion, B. brevis AMI-2 is a promising source for CGTase to synthesize β-cyclodextrin with considerable encapsulation efficiency. Further, the obtained results suggest that chitosan films containing clove oils encapsulated in β-cyclodextrin could serve as edible antimicrobial food-packaging materials to combat microbial contamination.
Keywords
${\beta}$-cyclodextrin glucanotransferase; Brevibacillus; RSM; optimization; immobilization;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Radünz M, da Trindade MLM, Camargo TM, Radünz AL, Borges CD, Gandra EA, et al. 2019. Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chem. 276: 180-186.   DOI
2 Celebioglu A, Yildiz ZI, Uyar T. 2018. Thymol/cyclodextrin inclusion complex nanofibrous webs: Enhanced water solubility, high thermal stability and antioxidant property of thymol. Food Res. Int. 106: 280-290.   DOI
3 Abada MB, Hamdi SH, Gharib R, Messaoud C, Fourmentin S, Greige-Gerges H, et al. 2019. Post-harvest management control of Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae): new insights through essential oil encapsulation in cyclodextrin. Pest Manag. Sci. 75: 2000-2008.   DOI
4 Malhotra B, Keshwani A, Kharkwal H. 2015. Antimicrobial food packaging: potential and pitfalls. Front Microbiol. 6: 611.   DOI
5 Niu B, Shao P, Chen H, Sun P. 2019. Structural and physiochemical characterization of novel hydrophobic packaging films based on pullulan derivatives for fruits preservation. Carbohydr. Polym. 208: 276-284.   DOI
6 Liu X, Han W, Zhu Y, Xuan H, Ren J, Zhang J, et al. 2018. Antioxidative and antibacterial self-healing edible polyelectrolyte multilayer film in fresh-cut fruits. J. Nanosci. Nanotechnol. 18: 2592-2600.   DOI
7 Shaikh M, Haider S, Ali TM, Hasnain A. 2019. Physical, thermal, mechanical and barrier properties of pearl millet starch films as affected by levels of acetylation and hydroxypropylation. Int. J. Biol. Macromol. 124: 209-219.   DOI
8 Pereira dos Santos E, Nicacio PHM, Coelho Barbosa F, Nunes da Silva H, Andrade ALS, Lia Fook MV, et al. 2019. Chitosan/essential oils formulations for potential use as wound dressing: physical and antimicrobial properties. Materials (Basel) 12: 2223.   DOI
9 Gao HX, He Z, Sun Q, He Q, Zeng WC. 2019. A functional polysaccharide film forming by pectin, chitosan, and tea polyphenols. Carbohydr. Polym. 215: 1-7.   DOI
10 Zhong Y, Zhuang C, Gu W, Zhao Y. 2019. Effect of molecular weight on the properties of chitosan films prepared using electrostatic spraying technique. Carbohydr. Polym. 212: 197-205.   DOI
11 Elshafie HS, Gruľova D, Baranova B, Caputo L, De Martino L, Sedlak V, et al. 2019. Antimicrobial activity and chemical composition of essential oil extracted from Solidago canadensis L. growing wild in Slovakia. Molecules 24(7). pii: E1206.
12 Abanoz HS, Kunduhoglu B. 2018. Antimicrobial activity of a bacteriocin produced by Enterococcus faecalis KT11 against some Pathogens and antibiotic-eesistant bacteria. Korean J. Food Sci. Anim. Resour. 38: 1064-1079.   DOI
13 Miceli de Farias F, dos Santos Nascimento J, Cabral da Silva Santos O, de Freire Bastos M do C. 2019. Study of the effectiveness of staphylococcins in biopreservation of Minas fresh (Frescal) cheese with a reduced sodium content. Int. J. Food Microbiol. 304: 19-31.   DOI
14 Sun C, Li Y, Cao S, Wang H, Jiang C, Pang S, et al. 2018. Antibacterial activity and mechanism of action of bovine lactoferricin derivatives with symmetrical amino acid sequences. Int. J. Mol. Sci. 19: 2951.   DOI
15 Silva F, Domingues FC. 2017. Antimicrobial activity of coriander oil and its effectiveness as food preservative. Crit. Rev. Food Sci. Nutr. 57: 35-47.   DOI
16 Hu Q, Zhou M, Wei S. 2018. Progress on the antimicrobial activity research of clove oil and eugenol in the food antisepsis field. J. Food Sci. 83: 1476-1483.   DOI
17 de Rostro-Alanis MJ, Baez-Gonzalez J, Torres-Alvarez C, Parra- Saldivar R, Rodriguez-Rodriguez J, Castillo S. 2019. Chemical composition and biological activities of oregano essential oil and its fractions obtained by vacuum distillation. Molecules 24(10). pii: E1904.
18 Almeida ET da C, de Souza GT, de Sousa Guedes JP, Barbosa IM, de Sousa CP, Castellano LRC, et al. 2019. Mentha piperita L. essential oil inactivates spoilage yeasts in fruit juices through the perturbation of different physiological functions in yeast cells. Food Microbiol. 82: 20-29.   DOI
19 Pandini JA, Pinto FGS, Scur MC, Santana CB, Costa WF, Temponi LG, et al. 2017. Chemical composition, antimicrobial and antioxidant potential of the essential oil of Guarea kunthiana A. Juss. Braz. J. Biol. 78: 53-60.   DOI
20 Gadisa E, Weldearegay G, Desta K, Tsegaye G, Hailu S, Jote K, et al. 2019. Combined antibacterial effect of essential oils from three most commonly used Ethiopian traditional medicinal plants on multidrug resistant bacteria. BMC Complement Altern. Med. 19: 24.   DOI
21 Herrera A, Rodriguez FJ, Bruna JE, Abarca RL, Galotto MJ, Guarda A, et al. 2019. Antifungal and physicochemical properties of inclusion complexes based on ${\beta}$-cyclodextrin and essential oil derivatives. Food Res. Int. 121: 127-135.   DOI
22 Matshetshe KI, Parani S, Manki SM, Oluwafemi OS. 2018. Preparation, characterization and in vitro release study of ${\beta}$-cyclodextrin/chitosan nanoparticles loaded Cinnamomum zeylanicum essential oil. Int. J. Biol. Macromol. 118: 676-682.   DOI
23 Chen G, Liu B. 2016. Cellulose sulfate based film with slowrelease antimicrobial properties prepared by incorporation of mustard essential oil and ${\beta}$-cyclodextrin. Food Hydrocoll. 55: 100-107.   DOI
24 Devi KP, Sakthivel R, Nisha SA, Suganthy N, Pandian SK. 2013. Eugenol alters the integrity of cell membrane and acts against the nosocomial pathogen Proteus mirabilis. Arch Pharm. Res. 36: 282-292.   DOI
25 Marchese A, Barbieri R, Coppo E, Orhan IE, Daglia M, Nabavi SF, et al. 2017. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 43: 668-689.   DOI
26 Zhang Y, Wang Y, Zhu X, Cao P, Wei S, Lu Y. 2017. Antibacterial and antibiofilm activities of eugenol from essential oil of Syzygium aromaticum (L.) Merr. & L. M. Perry (clove) leaf against periodontal pathogen Porphyromonas gingivalis. Microb. Pathog. 113: 396-402.   DOI
27 Mohamed MSM, Abdallah AA, Mahran MH, Shalaby AM. 2018. Potential alternative treatment of ocular bacterial infections by oil derived from Syzygium aromaticum flower (Clove). Curr. Eye Res. 43: 873-881.   DOI
28 Devi KP, Nisha SA, Sakthivel R, Pandian SK. 2010. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 130: 107-115.   DOI
29 Xu J-G, Liu T, Hu Q-P, Cao X-M. 2016. Chemical composition, antibacterial properties and mechanism of action of essential oil from clove buds against Staphylococcus aureus. Molecules 21: 1194.   DOI
30 Pinto E, Vale-Silva L, Cavaleiro C, Salgueiro L. 2009. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 58: 1454-1462.   DOI
31 Shi Y, Huang S, He Y, Wu J, Yang Y. 2018. Navel orange peel essential oil to control food spoilage molds in potato slices. J. Food Prot. 81: 1496-1502.   DOI
32 Sun X, Sui S, Ference C, Zhang Y, Sun S, Zhou N, et al. 2014. Antimicrobial and mechanical properties of ${\beta}$-cyclodextrin inclusion with essential oils in chitosan films. J. Agric. Food Chem. 62: 8914- 8918.   DOI
33 Kfoury M, Auezova L, Greige-Gerges H, Fourmentin S. 2015. Promising applications of cyclodextrins in food: Improvement of essential oils retention, controlled release and antiradical activity. Carbohydr. Polym. 131: 264-272.   DOI
34 Burt S. 2004. Essential oils: their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 94: 223-253.   DOI
35 Kotronia M, Kavetsou E, Loupassaki S, Kikionis S, Vouyiouka S, Detsi A. 2017. Encapsulation of Oregano (Origanum onites L.) essential oil in ${\beta}$-Cyclodextrin (${\beta}$-CD): synthesis and characterization of the inclusion complexes. Bioengineering 4(3). pii: E74.
36 Del Valle EMM. 2004. Cyclodextrins and their uses: A review. Process Biochem. 39: 1033-1046.   DOI
37 Qi Q, Zimmermann W. 2005. Cyclodextrin glucanotransferase: From gene to applications. Appl. Microbiol. Biotechnol. 66: 475-485.   DOI
38 Zain WSWM, Illias RM, Salleh MM, Hassan O, Rahman RA, Hamid AA. 2007. Production of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. TS1-1: Optimization of carbon and nitrogen concentration in the feed medium using central composite design. Biochem. Eng. J. 33: 26-33.   DOI
39 Park CS, Park KH, Kim SH. 1989. A rapid screening method for alkaline ${\beta}$-cyclodextrin glucanotransferase using phenolphthaleinmethyl orange-containingsolid medium. Agric. Biol. Chem. 53: 1167-1169.   DOI
40 Leemhuis H, Kelly RM, Dijkhuizen L. 2010. Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Appl. Microbiol. Biotechnol. 85: 823-835.   DOI
41 Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874.   DOI
42 Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI
43 Assis GBN, Pereira FL, Zegarra AU, Tavares GC, Leal CA, Figueiredo HCP. 2017. Use of MALDI-TOF mass spectrometry for the fast identification of gram-positive fish pathogens. Front. Microbiol. 8: 1492.   DOI
44 Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617.   DOI
45 Ferrarotti SA, Rosso AM, Marechal MA, Krymkiewicz N, Marechal LR. 1996. Isolation of two strains (S-R type) of Bacillus circulans and purification of a cyclomaltodextrin-glucanotransferase. Cell Mol. Biol. (Noisy-le-grand) 42: 653-657.
46 Deng Z, Wang F, Zhou B, Li J, Li B, Liang H. 2019. Immobilization of pectinases into calcium alginate microspheres for fruit juice application. Food Hydrocoll. 89: 691-699.   DOI
47 Sophianopoulos AJ, Warner IM. 1992. Purification of beta-cyclodextrin. Anal. Chem. 64: 2652-2654.   DOI
48 Ayala-Zavala JF, Soto-Valdez H, Gonzalez-Leon A, Alvarez-Parrilla E, Martin-Belloso O, Gonzalez-Aguilar GA. 2008. Microencapsulation of cinnamon leaf (Cinnamomum zeylanicum) and garlic (Allium sativum) oils in ${\beta}$-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 60: 359-368.   DOI
49 Tongnuanchan P, Benjakul S. 2014. Essential Oils: Extraction, bioactivities, and their uses for food preservation. J. Food Sci. 79: 1231-1249.   DOI
50 Goel A, Nene SN. 1995. Modifications in the Phenolphthalein method for spectrophotometric estimation of beta cyclodextrin. Starch‐Starke 47: 399-400.   DOI
51 Ye Y, Zhu M, Miao K, Li X, Li D, Mu C. 2017. Development of antimicrobial gelatin-based edible films by incorporation of transanethole/${\beta}$-cyclodextrin inclusion complex. Food Bioprocess Technol. 10: 1844-1853.   DOI
52 Lawrence HA, Palombo EA. 2009. Activity of essential oils against Bacillus subtilis spores. J. Microbiol. Biotechnol. 19: 1590-1595.   DOI
53 Liang JB, Chen YQ, Lan CY, Tam NFY, Zan QJ, Huang LN. 2007. Recovery of novel bacterial diversity from mangrove sediment. Mar. Biol. 150: 739-747.   DOI
54 Mendes L, Tsai S, Mendes LW, Tsai SM. 2014. Variations of bacterial community structure and composition in mangrove sediment at different depths in southeastern Brazil. Diversity 6: 827-843.   DOI
55 Rahi P, Prakash O, Shouche YS. 2016. Matrix-assisted laser desorption/ionization time-of-flight Mass-Spectrometry (MALDI-TOF MS) based microbial identifications: challenges and scopes for microbial ecologists. Front. Microbiol. 7: 1359.
56 Strejcek M, Smrhova T, Junkova P, Uhlik O. 2018. Whole-cell MALDI-TOF MS versus 16S rRNA gene analysis for identification and dereplication of recurrent bacterial isolates. Front. Microbiol. 9: 1294.   DOI
57 Blanco KC, De Lima CJB, Monti R, Martins J, Bernardi NS, Contiero J. 2012. Bacillus lehensis - An alkali-tolerant bacterium isolated from cassava starch wastewater: Optimization of parameters for cyclodextrin glycosyltransferase production. Ann. Microbiol. 62: 329-337.   DOI
58 Timperio AM, Gorrasi S, Zolla L, Fenice M. 2017. Evaluation of MALDI-TOF mass spectrometry and MALDI BioTyper in comparison to 16S rDNA sequencing for the identification of bacteria isolated from Arctic sea water. PLoS One 12: e0181860.   DOI
59 Es I, Ribeiro MC, dos Santos Junior SR, Khaneghah AM, Rodriguez AG, Amaral AC. 2016. Production of cyclodextrin glycosyltransferase by immobilized Bacillus sp. on chitosan matrix. Bioprocess Biosyst. Eng. 39: 1487-1500.   DOI
60 de Araujo Coelho SL, Magalhaes VC, Marbach PAS, Cazetta ML. 2016. A new alkalophilic isolate of Bacillus as a producer of cyclodextrin glycosyltransferase using cassava flour. Braz. J. Microbiol. 47: 120-128.   DOI
61 Ivanova V. 2010. Immobilization of cyclodextrin glucanotransferase from Paenibacillus macerans atcc 8244 on magnetic carriers and production of cyclodextrins. Biotechnol. Biotechnol. Equip. 24: 516-528.   DOI
62 Reddy SV, More SS, Annappa GS. 2017. Purification and properties of beta-cyclomaltodextrin glucanotransferase from Bacillus flexus SV 1. J. Basic Microbiol. 57: 974-981.   DOI
63 Mora MMM, Sanchez KH, Santana RV, Rojas AP, Ramirez HL, Torres-Labandeira JJ. 2012. Partial purification and properties of cyclodextrin glycosiltransferase (CGTase) from alkalophilic Bacillus species. Springerplus 1: 61.   DOI
64 Costa H, Gaston JR, Lara J, Martinez CO, Moriwaki C, Matioli G, et al. 2015. Cyclodextrin glycosyltransferase production by free cells of Bacillus circulans DF 9R in batch fermentation and by immobilized cells in a semi-continuous process. Bioprocess Biosyst. Eng. 38: 1055-1063.   DOI
65 Khan YM, Munir H, Anwar Z. 2019. Optimization of process variables for enhanced production of urease by indigenous Aspergillus niger strains through response surface methodology. Biocatal Agric. Biotechnol. 20: 101202.   DOI
66 Bas D, Boyaci IH. 2007. Modeling and optimization II: Comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J. Food Eng. 78: 846-854.   DOI
67 Vassileva A, Atanasova N, Ivanova V, Dhulster P, Tonkova A. 2007. Characterisation of cyclodextrin glucanotransferase from Bacillus circulans ATCC 21783 in terms of cyclodextrin production. Ann. Microbiol. 57: 609-615.   DOI
68 Rajput KN, Patel KC, Trivedi UB. 2016. ${\beta}$-cyclodextrin production by cyclodextrin glucanotransferase from an alkaliphile Microbacterium terrae KNR 9 using different starch substrates. Biotechnol. Res. Int. 2016: 1-7.   DOI
69 Vijayaraghavan P, Arasu MV, Anantha Rajan R, Al-Dhabi NA. 2019. Enhanced production of fibrinolytic enzyme by a new Xanthomonas oryzae IND3 using low-cost culture medium by response surface methodology. Saudi J. Biol. Sci. 26: 217-224.   DOI
70 Li Y, Zhu C, Zhai X, Zhang Y, Duan Z, Sun J. 2018. Optimization of enzyme assisted extraction of polysaccharides from pomegranate peel by response surface methodology and their anti-oxidant potential. Chin. Herb Med. 10: 416-423.   DOI
71 Kim MH, Sohn CB, Oh TK. 1998. Cloning and sequencing of a cyclodextrin glycosyltransferase gene from Brevibacillus brevis CD162 and its expression in Escherichia coli. FEMS Microbiol. Lett. 164: 411-418.   DOI
72 Schoffer JDN, Klein MP, Rodrigues RC, Hertz PF. 2013. Continuous production of ${\beta}$-cyclodextrin from starch by highly stable cyclodextrin glycosyltransferase immobilized on chitosan. Carbohydr. Polym. 98: 1311-1316.   DOI
73 Ibrahim ASS, Al-Salamah AA, El-Toni AM, El-Tayeb MA, Elbadawi YB. 2014. Cyclodextrin glucanotransferase immobilization onto functionalized magnetic double mesoporous core-shell silica nanospheres. Electron. J. Biotechnol. 17: 55-64.   DOI
74 Matte CR, Nunes MR, Benvenutti EV, Schöffer J da N, Ayub MAZ, Hertz PF. 2012. Characterization of cyclodextrin glycosyltransferase immobilized on silica microspheres via aminopropyltrimethoxysilane as a "spacer arm." J. Mol. Catal. B Enzym. 78: 51-56.   DOI
75 Tonkova A. 1998. Bacterial cyclodextrin glucanotransferase. Enzyme Microb. Technol. 22: 678-686.   DOI
76 Kang J, Liu L, Wu X, Sun Y, Liu Z. 2018. Effect of thyme essential oil against Bacillus cereus planktonic growth and biofilm formation. Appl. Microbiol. Biotechnol. 102: 10209-10218.   DOI
77 Shi C, Zhang X, Guo N. 2018. The antimicrobial activities and action-mechanism of tea tree oil against food-borne bacteria in fresh cucumber juice. Microb. Pathog. 125: 262-271.   DOI
78 Quendera AP, Barreto AS, Semedo-Lemsaddek T. 2018. Antimicrobial activity of essential oils against foodborne multidrugresistant enterococci and aeromonads in planktonic and biofilm state. Food Sci. Technol. Int. 25: 101-108.   DOI