• Title/Summary/Keyword: optimization conditions

검색결과 3,123건 처리시간 0.027초

위성발사체의 궤적최적화와 최적 유도 알고리듬 설계 (Trajectory Optimization and Optimal Explicit Guidance Algorithm Design for a Satellite Launch Vehicle)

  • 노웅래;김유단;송택렬
    • 제어로봇시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.173-182
    • /
    • 2001
  • Ascent trajectory optimization and optimal explicit guidance problems for a satellite launch vehicle in a 2-dimensional pitch plane are studied. The trajectory optimization problem with boundary conditions is formulated as a nonlinear programming problem by parameterizing the pitch attitude control variable, and is solved by using the SQP algorithm. The flight constraints such as gravity-turn are imposed. An optimal explicit guidance algorithm in the exoatmospheric phase is also presented, the guidance algorithm provides steering command and time-to-go value directly using the current states of the vehicle and the desired orbit insertion conditions. To verify the optimality and accuracy of the algorithm simulations are performed.

  • PDF

The Stacking Sequence Optimization of Stiffened Laminated Curved Panels with Different Loading and Stiffener Spacing

  • Kim Cheol;Yoon In-Se
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1541-1547
    • /
    • 2006
  • An efficient procedure to obtain the optimal stacking sequence and the minimum weight of stiffened laminated composite curved panels under several loading conditions and stiffener layouts has been developed based on the finite element method and the genetic algorithm that is powerful for the problem with integer variables. Often, designing composite laminates ends up with a stacking sequence optimization that may be formulated as an integer programming problem. This procedure is applied for a problem to find the stacking sequence having a maximum critical buckling load factor and the minimum weight. The object function in this case is the weight of a stiffened laminated composite shell. Three different types of stiffener layouts with different loading conditions are investigated to see how these parameters influence on the stacking sequence optimization of the panel and the stiffeners. It is noticed from the results that the optimal stacking sequence and lay-up angles vary depending on the types. of loading and stiffener spacing.

ON OPTIMALITY CONDITIONS FOR ABSTRACT CONVEX VECTOR OPTIMIZATION PROBLEMS

  • Lee, Gue-Myung;Lee, Kwang-Baik
    • 대한수학회지
    • /
    • 제44권4호
    • /
    • pp.971-985
    • /
    • 2007
  • A sequential optimality condition characterizing the efficient solution without any constraint qualification for an abstract convex vector optimization problem is given in sequential forms using subdifferentials and ${\epsilon}$-subdifferentials. Another sequential condition involving only the subdifferentials, but at nearby points to the efficient solution for constraints, is also derived. Moreover, we present a proposition with a sufficient condition for an efficient solution to be properly efficient, which are a generalization of the well-known Isermann result for a linear vector optimization problem. An example is given to illustrate the significance of our main results. Also, we give an example showing that the proper efficiency may not imply certain closeness assumption.

Buckling load optimization of beam reinforced by nanoparticles

  • Motezaker, Mohsen;Eyvazian, Arameh
    • Structural Engineering and Mechanics
    • /
    • 제73권5호
    • /
    • pp.481-486
    • /
    • 2020
  • This paper deals with the buckling and optimization of a nanocomposite beam. The agglomeration of nanoparticles was assumed by Mori-Tanaka model. The harmony search optimization algorithm is adaptively improved using two adjusted processes based on dynamic parameters. The governing equations were derived by Timoshenko beam model by energy method. The optimum conditions of the nanocomposite beam- based proposed AIHS are compared with several existing harmony search algorithms. Applying DQ and Hs methods, the optimum values of radius and FS were obtained. The effects of thickness, agglomeration, volume percent of CNTs and boundary conditions were assumed. The results show that with increasing the volume percent of CNTs, the optimum radius of the beam decreases while the FS was improved.

HYPO-CONVERGENCE OF SEQUENCES OF FUZZY SETS AND MAXIMIZATION

  • Tortop, Sukru;Dundar, ErdInC
    • 호남수학학술지
    • /
    • 제44권3호
    • /
    • pp.461-472
    • /
    • 2022
  • In optimization theory, hypo-convergence is considered as an effective tool by providing the convergence of supremum values under some conditions. This feature makes it different from other types of convergence. Therefore, we have defined the hypo-convergence of a sequence of fuzzy sets due to the increasing interest in fuzzy set theory in recent years. After giving a theoretical framework, we deal with the optimization process by using a sequential characterization of hypo-convergence of sequence of fuzzy sets. Since the maximization process in optimization theory is beyond the presence of hypo-convergence, we give some conditions to satisfy the convergence of supremum values. Furthermore, we show how sequence of fuzzy sets and fuzzy numbers differ in the convergence of the supremum values.

냉각수 가열장치의 온도 최적화를 위한 열전도 해석에 관한 연구 (A Study on Thermal Conduction Analysis for Optimization of Temperature of Coolant Heater)

  • 한대성;배규현
    • 반도체디스플레이기술학회지
    • /
    • 제21권1호
    • /
    • pp.33-38
    • /
    • 2022
  • This study investigates the outlet temperature of coolant heater based on heat and flow volume conditions. Through computer simulation, the coolant temperature at the outlet was analyzed to investigate the heat and flow volume conditions of the coolant heater, and the optimal conditions were derived. Results show that heat and flow volume conditions, it was confirmed that heat condition is 0.424 W/mm3, and flow volume condition is 500 l/h, demonstrates optimal conditions. The results of this study can be utilized to efficiently control the coolant temperature through various heat and flow volume conditions.

횡방향 기동을 하는 위성발사체의 3차원 궤적최적화와 직접식 유도기법 (3-Dimensional Trajectory Optimization and Explicit Guidance for a Satellite Launch Vehicle with Yaw Maneuver)

  • 노웅래;김유단;박정주;탁민제
    • 제어로봇시스템학회논문지
    • /
    • 제8권7호
    • /
    • pp.613-623
    • /
    • 2002
  • Ascent trajectory optimization and explicit guidance problems for a satellite launch vehicle with yaw maneuver in a 3-dimension are considered. The trajectory optimization problem with boundary conditions is formulated as a nonlinear programming problem by parameterizing the inertial pitch and yaw attitude control variables, and is solved by using the SQP algorithm. The flight constraints such as gravity-turn and range safety conditions are imposed. An explicit inertial guidance algorithm in the exoatmospheric phase is also presented. The guidance algorithm provides steering command and time-to-go value directly using the current states of the vehicle and the desired orbit insertion conditions. The liquid propelled Delta 2910 launch vehicle is used as a numerical model.

여름철 공조시스템의 최적 운전 제어 방식 (Optimal air-conditioning system operating control strategies in summer)

  • 허정호
    • 설비공학논문집
    • /
    • 제9권3호
    • /
    • pp.410-425
    • /
    • 1997
  • Buildings are mostly under part load conditions causing an inefficient system operation in terms of energy consumption. It is critical to operate building air-conditioning system with a scientific or optimal manner which minimizes energy consumption and maintains thermal comfort by matching building sensible and latent loads. Little research has been performed in developing general methodologies for the optimal operation of air-conditioning system. Based on this research motivation, system simulation program was developed by adopting various equipment operating strategies which are energy efficient especially for humidity control in summer. A numerical optimization technique was utilized to search optimal solution for multi-independent variables and then linked to the developed system simulation model within a mam program. The main goal of the study is to provide a systematic framework and guideline for the optimal operation of air-conditioning system focusing on air-side. For given cooling loads and ambient outdoor conditions the optimal operating strategies of a commercial building are determined by minimizing a constrained objective function by a nonlinear programming technique. Desired space setpoint conditions were found through evaluating the trade-offs between comfort and system power consumption. The results show that supply airflow rate and compressor fraction play main roles in the optimization process. It was found that variable setpoint optimization technique could produce lower indoor humidity level demanding less power consumption which will be benefits for building applications of humidity problem.

  • PDF

고속 화차용 대차프레임의 경량화를 위한 최적설계 (Shape Optimization of a Bogie frame for the Reduction of its Weight)

  • 김현수;안찬우;최경호;박정호
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.186-192
    • /
    • 2002
  • As industry is developed, the faster transportation of freight train is demanded. The optimum design of a structure requires the determination of economical member size and shape of a structure which will satisfy the design conditions and the functions. In this study, it is attempted to minimize the dead weight of bogie frame. From the numerical results in the shape and size optimization of the bogie frame, it is known that the weight can be reduced up to 17.45% with the displacement, stress, first natural frequency and critical buckling-load constraints. The first natural frequency and the critical buckling load of the optimized model is larger than that of the lowest design value. Stress and displacement conditions are also satisfied within the design conditions. From the results, the optimal model is stable and useful for the improvement of railway carriages.

Taguchi 법에 의한 흑목이버섯의 항산화활성 증진을 위한 열수추출 최적화 (Optimization of Hot Water Extraction for Enhancing Antioxidative Activity from Auricularia auricula Using Taguchi Approach)

  • 김현민;허원;이신영
    • 산업식품공학
    • /
    • 제15권3호
    • /
    • pp.221-229
    • /
    • 2011
  • Optimization study of the hot water extraction for enhancing antioxidative activity from Auricularia auricula was performed by Taguchi approach using orthogonal matrix $L_9(3^4)$ method. The correlation between DPPH radical scavenging activity and the components of samples extracted from different extraction conditions were also analyzed. The correlation coefficient between DPPH radical scavenging activity and melanin content of A. auricula were 0.93, indicating 'good correlation'. The optimum extraction conditions was obtained at the extraction time of 1 hr. temperature of $85^{\circ}C$, solid: water ratio of 1: 40(w/v) and frequency of 2 times. Under these conditions, values of maximum DPPH free radical scavenging activity and melanin contents of A. auricula were $67.21{\pm}2.17$ and $52.94{\pm}2.10 mg/g$, respectively. Melanin content of 1.6 times and DPPH free radical scavenging effect of 130% were enhanced by optimization.