1 |
S. Tortop, Sequential characterization of statistical epi-convergence, Soft Computing 24 (2020), 18565-18571.
DOI
|
2 |
L. A. Zadeh, The concept of linguistic variable and its application to approximate reasoning-I, Information Sciences 8 (1975), no. 4, 301-357.
DOI
|
3 |
H.-J. Zimmermann, Fuzzy Set Theory and its Applications, 4th Edition, Norwell, Kluwer, MA, 2001.
|
4 |
C. Kuratowski, Topologie. Vol. I, PWN, Warszawa, 1958.
|
5 |
R. J-B. Wets, Convergence of convex functions, variational inequalities and convex optimization problems, New York, 1980.
|
6 |
M. Matloka, Sequences of fuzzy numbers, BUSEFAL 28 (1986), 28-37.
|
7 |
U. Mosco,Convergence of convex sets and of solutions of variational inequalities, Adv. Math. 3 (1969), 510-585.
DOI
|
8 |
T. Pedraza, J. Rodriguez-Lapez, and S. Romaguera, Convergence of fuzzy sets with respect to the supremum metric, Fuzzy Sets Syst. 245 (2014), 83-100.
DOI
|
9 |
T. Pennanen, Epi-convergent discretizations of multistage stochastic programs, Mathematics of Operations Research 30 (2005), no. 1, 245-256.
DOI
|
10 |
H. Attouch, Variational Convergence for Functions and Operators, Pitman Advanced Pub. Program, Boston, 1984.
|
11 |
H. Huang, Characterizations of endograph metric and Γ-convergence on fuzzy sets, Fuzzy Sets Syst. 350 (2018), 55-84.
DOI
|
12 |
S. Aytar, S. Pehlivan, and M. Mammadov, The core of a sequence of fuzzy numbers, Fuzzy Sets and Systems 159 (2008), no. 24, 3369-3379.
DOI
|
13 |
T. Fan, Endographic approach on supremum and infimum of fuzzy numbers, Inf. Sci. 159 (2004), 221-231.
DOI
|
14 |
D. H. Hong, E. L. Moon, and J. D. Kim, A note on the core of fuzzy numbers, Applied Mathematics Letters 23 (2010), no. 5, 651-655.
DOI
|
15 |
P.E. Kloeden, Compact supported endographs and fuzzy sets, Fuzzy Sets Syst. 4 (1980), no. 2, 193-201.
DOI
|
16 |
S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems 33 (1989), 123-126.
DOI
|
17 |
G. H. Greco, M. P. Moschen, and E. Quelho Frota Rezende, On the variational convergence for fuzzy sets in metric spaces, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 44 (1998), 27-39.
DOI
|
18 |
A. J. King and R. Wets, Epi-consistency of convex stochastic programs, Stochastics Stochastics Rep. 34 (1991), 83-92.
DOI
|
19 |
G. D. Maso, An introduction to Γ-convergence, Vol. 8, Boston, 1993.
|
20 |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin, 1998.
|
21 |
O. Talo and C. Cakan, The extension of the Knopp core theorem to the sequences of fuzzy numbers, Information Sciences 276 (2014), 10-20.
DOI
|
22 |
L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353.
DOI
|
23 |
L. A. Zadeh, The concept of linguistic variable and its application to approximate reasoning-I, Information Sciences 9 (1975), no. 1, 43-80.
DOI
|
24 |
R. A. Wijsman, Convergence of sequences of convex sets, cones and functions II, Trans. Amer. Math. Soc. 123 (1966), 32-45.
DOI
|
25 |
M. Rojas-Medar and H. Rom'an-Flores, On the equivalence of convergences of fuzzy sets, Fuzzy Sets Syst. 80 (1996), 217-224.
DOI
|
26 |
G. Salinetti and R. J-B. Wets, On the relation between two types of convergence for convex functions, J. Math. Anal. Appl. 60 (1977), 211-226.
DOI
|
27 |
O. Talo, Some properties of limit inferior and limit superior for sequences of fuzzy real numbers, Information Sciences 279 (2014), 560-568.
DOI
|
28 |
L. A. Zadeh, The concept of linguistic variable and its application to approximate reasoning-I, Information Sciences 8 (1975), no. 3, 199-249.
DOI
|
29 |
R. A. Wijsman, Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc. 70 (1964), 186-188.
DOI
|