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HYPO-CONVERGENCE OF SEQUENCES OF FUZZY SETS

AND MAXIMIZATION

Şükrü Tortop∗ and ErdİnÇ Dündar

Abstract. In optimization theory, hypo-convergence is considered as an
effective tool by providing the convergence of supremum values under

some conditions. This feature makes it different from other types of con-

vergence. Therefore, we have defined the hypo-convergence of a sequence
of fuzzy sets due to the increasing interest in fuzzy set theory in recent

years. After giving a theoretical framework, we deal with the optimiza-

tion process by using a sequential characterization of hypo-convergence
of sequence of fuzzy sets. Since the maximization process in optimization

theory is beyond the presence of hypo-convergence, we give some condi-

tions to satisfy the convergence of supremum values. Furthermore, we
show how sequence of fuzzy sets and fuzzy numbers differ in the conver-

gence of the supremum values.

1. Introduction

The concept of fuzzy sets has been recognized as an appropriate tool in
dealing with uncertain and vague information due to its ability for manipulat-
ing the knowledge of ambiguity mathematically. It was introduced by Zadeh
[25] for the first time. Applications of this theory can be found in decision
theory, artificial intelligence, expert systems, computer science, logic, robotics,
operations research and others. Zimmermann [29] explains fuzzy set theory in
detail in his book for a newcomer to the field or for somebody who wants to
apply fuzzy set theory to his problems. The concept of fuzzy number which
is a separate class of fuzzy sets and fuzzy arithmetic was introduced by Zadeh
[26, 27, 28] in the year 1975. Matloka [11] defined the ordinary convergence of
a sequence of fuzzy numbers and studied on some basic theorems. Nanda [13]
showed the completeness of the set of all convergent sequences of fuzzy numbers
in a metric space. Limit superior and limit inferior of a bounded sequence of
fuzzy numbers were defined by Aytar et al. [2]. Afterwards, some properties of
limit superior and limit inferior of a bounded sequence of fuzzy numbers have
been obtained by Hong et al. [5], Talo and Çakan [19], Talo [20].
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A fuzzy set can be identified with its hypograph which is also called the en-
dograph in many references. Especially, endograph metric was introduced by
Kloeden [8]. The Kuratowski convergence of hypographs leads the way through
Γ-convergence of fuzzy sets which was studied by Rojas-Medar and Román-
Flores [17]. Moreover, Γ-convergence and endograph metric have attracted a lot
of attention from mathematicians working in this field [3, 4, 6, 10, 14]. It should
be noted that Γ-convergence in two dimensions is an epi or hypo-convergence
(see [1]). Thus, it is related to convergence problems for minimization or max-
imization of sequences of functions.

Hypo-convergence focuses on hypographs, whereas epi-convergence deals
with epigraphs. In literature, epi-convergence is more familiar than hypo-
convergence, and it is first studied by Wijsman [23, 24] as infimal convergence
at that time. After Wijsman’s contributions, many authors contributed to this
topic [12, 18, 22].

The importance of hypo-convergence stems from the fact that it is the ap-
propriate notion of convergence for maximization problems. It finds optimal
solutions by preserving the convergence of supremum values under some condi-
tions in optimization process. Particularly, Proposition 3.1 in [7] and Theorem
2 in [15] show the importance of the convergence of infimum values of a se-
quence of functions. Our work focuses on the convergence of supremum values
of sequence of fuzzy sets for maximization problems. Hence, we deal with the
hypo-convergence of sequences of fuzzy sets and we will use it in the field of
optimization as we have used statistical epi-convergence in our previous study
[21]. Furthermore, we will show how a sequence of fuzzy sets and fuzzy numbers
differ in the convergence of the supremum values.

2. Preliminaries

Definition 2.1. [25] A fuzzy set is a pair (U, f) where U is a set and
f : U → [0, 1] a membership function. For each x ∈ U , the value f(x) is called
the grade of membership of x in (U, f). A fuzzy set on Rm will be denoted by
F (Rm).

Definition 2.2. [26, 27, 28] A mapping u : R → [0, 1] is a fuzzy number if
it satisfies the following conditions:

(i) ∃x0 ∈ R such that u(x0) = 1 (u is normal).

(ii) u[λx+ (1− λ)y] ≥ min{u(x), u(y)} for all x, y ∈ R and for all λ ∈ [0, 1]
(u is fuzzy convex).

(iii) u is upper semi-continuous.

(iv) The set u0 := {x ∈ R : u(x) > 0} is compact.

E1 denotes the set of all fuzzy numbers on R.
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λ-level set uλ of u ∈ F (R) is defined by

uλ =

{
{x ∈ R : u(x) ≥ λ} , (0 < λ ≤ 1)

{x ∈ R : u(x) > λ} , (λ = 0)
.

The set uλ = [uλ, uλ] is closed, bounded and non-empty interval for each
λ ∈ [0, 1].

In this paper, we will use Kuratowski convergence [9] in order to define hypo
convergence of a fuzzy number. Before moving on to definitions, we will use
the following collections of subsets of N.

N = {N ⊆ N : N\N finite},
N# = {N ⊆ N : N infinite}.

In a metric space (X, d), N (x) denotes the family of all open sets containing
the point x ∈ X.

Definition 2.3. [16] The outer and inner limit of a sequence (An) of closed
subsets of X is the following sets

lim sup
n

An =

{
x | ∀ V ∈ N (x), ∃N ∈ N#, ∀n ∈ N : An ∩ V ̸= ∅

}
=

{
x | ∃N ∈ N#, ∀n ∈ N, ∃xn ∈ An : lim

n∈N
xn = x

}
,

lim inf
n

An =

{
x | ∀ V ∈ N (x), ∃N ∈ N , ∀n ∈ N : An ∩ V ̸= ∅

}
=

{
x | ∃N ∈ N , ∀n ∈ N, ∃xn ∈ An : lim

n∈N
xn = x

}
.

respectively. If the following equality holds,

lim
n

An = lim inf
n

An = lim sup
n

An

then, we say that the limit of (An) exists.

Definition 2.4. [16] Let f be a function defined on X, the hypograph of f
is the set hypo(f) = {(x, α) ∈ X × R | α ≤ f(x)}.

Definition 2.5. [16] Given an arbitrary set X, a totally ordered set Y , and
a function f : X → Y , the argmaxf is defined by

argmaxf = {x ∈ X : f(x) = sup f}.

Definition 2.6. [16] Given an arbitrary set X, a totally ordered set Y and
a function f : X → Y , the ε-argmax f is defined by

ε-argmaxf = {x ∈ X : f(x) ≥ sup f − ε}.
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3. Main result

In this section, we define hypo-convergence of an upper semicontinuous se-
quence of fuzzy sets. Then it is followed by a topological definition and a
sequential characterization. These definitions will guide us in obtaining neces-
sary condition for solving maximization problems. At the end, we will show
how to achieve the convergence εn-argmaxun → argmaxu for hypo-convergent
sequence of fuzzy sets. In addition to this, the property of normality for hypo-
convergent fuzzy numbers will satisfy the convergence of supremum values.

Definition 3.1. Let (un) be upper semicontinuous sequence of fuzzy sets
in F (R). Hypo-limit inferior hst- lim infn un is defined by:

hypo(h- lim inf
n

un) = lim inf
n

hypo(un).

Similarly hypo-limit superior hst- lim supn un is defined by:

hypo(h- lim sup
n

un) = lim sup
n

hypo(un).

When these two functions equal to each other, we have h- limn un = h- lim infn un =
h- lim supn un. Hence the sequence (un) is said to be hypo-convergent to
u ∈ F (R). It is symbolized by

un
h→ u.

According to the Definition 3.1, the relation between Kuratowski convergence
and hypo-convergence of sequence of fuzzy sets appears in the following equal-
ity.

un
h→ u ⇐⇒ hypo(un) → hypo(u).

Theorem 3.2. For every x ∈ R, if we define upper semicontinuous u ∈
F (R) by

u(x) = inf
V ∈N (x)

lim sup
n

sup
y∈V

un(y),

then lim supn hypo(un) = hypo(u).

Proof. We will establish the hypographical inclusions of the sets

lim sup
n

hypo(un) ⊂ hypo(u)

and

hypo(u) ⊂ lim sup
n

hypo(un).

For the first inclusion, let (x, µ) ∈ lim supn hypo(un). Let V0 ∈ N (x), ε > 0
and n0 ∈ N be arbitrary. Since the range of a fuzzy set is [0, 1], it is clear that
V0× (µ− ε, 1+ ε) is a neighbourhood of (x, µ). By using the definition of outer
limit of a set, ∃n′ ∈ N with n′ ≥ n0 we have

V0 × (µ− ε, 1 + ε)
⋂

hypo(un′) ̸= ∅.
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As a result,

sup
n≥n0

sup
y∈V0

un(y) ≥ sup
y∈V0

un′(y) ≥ µ− ε

Hence we have,

lim sup
n

sup
y∈V0

un(y) ≥ µ− ε

Since V0 and ε are arbitrary, we can take infimum of both sides.

inf
V ∈N (x)

lim sup
n

sup
y∈V

un(y) = u(x) ≥ µ

It shows that u(x) ≥ µ and (x, µ) ∈ hypo(u).
For the second inclusion let (x, µ) ∈ hypo(u). Let V0 ∈ N (x) and ε > 0 be
arbitrary. Since the range of a fuzzy set is [0, 1], we must show V0×(µ−ε, 1+ε)
meets hypo(un) frequently. Let n0 ∈ N be fixed. We know that

µ− ε < u(x) ≤ lim sup
n

sup
y∈V0

un(y) ≤ sup
n≥n0

sup
y∈V0

un(y).

∃n′ ≥ n0 such that

sup
y∈V0

un′(y) > µ− ε.

Hence, we have (
V0 × (µ− ε, 1 + ε)

)⋂
hypo(un′) ̸= ∅

which means (x, µ) ∈ lim supn hypo(un).

Theorem 3.3. For every x ∈ R, if we define upper semicontinuous v ∈
F (R) by

v(x) = inf
V ∈N (x)

lim inf
n

sup
y∈V

un(y),

then lim infn hypo(un) = hypo(v).

Proof. We want to show

lim inf
n

hypo(un) ⊂ hypo(v)

and

hypo(v) ⊂ lim inf
n

hypo(un).

For the first inclusion, let (x, µ) ∈ lim infn hypo(un). Let V0 ∈ N (x) and
ε > 0 be arbitrary. Since the range of a fuzzy set is [0, 1], it is clear that
V0× (µ− ε, 1+ ε) is a neighbourhood of (x, µ). By using the definition of inner
limit of a set, ∃n0 ∈ N such that

V0 × (µ− ε, 1 + ε)
⋂

hypo(un) ̸= ∅
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for each n ≥ n0. Thus, for all n ≥ n0 we have

sup
y∈V0

un(y) > µ− ε

and so

lim inf
n

sup
y∈V0

un(y) ≥ inf
n≥n0

sup
y∈V0

un(y) ≥ µ− ε.

Since V0 ∈ N (x) and ε > 0 are arbitrary,

inf
V ∈N (x)

lim inf
n

sup
y∈V

un(y) = v(x) > µ

and hence (x, µ) ∈ hypo(v).
For the second inclusion, let (x, µ) ∈ hypo(v). Let V0 ∈ N (x) and ε > 0 be

arbitrary. We need to show that V0 × (µ− ε, 1+ ε) meets hypo(un) eventually.
It is obvious that

lim inf
n

sup
y∈V0

un(y) ≥ v(x) > µ− ε.

Then, ∃n0 ∈ N such that

inf
n≥n0

sup
y∈V0

un(y) > µ− ε.

The inequality supy∈V0
un(y) > µ− ε is valid for all n ≥ n0. Hence,

V0 × (µ− ε, 1 + ε)
⋂

hypo(un) ̸= ∅

for all n ≥ n0 which is equal to

(x, µ) ∈ lim inf
n

hypo(un).

The following definition of hypo-limit inferior and superior of a sequence of
fuzzy sets is a result of Theorem 3.2 and Theorem 3.3.

Definition 3.4. Let (un) be an upper semicontinuous sequence of fuzzy
sets in F (R). For every x ∈ R, hypo-limit inferior is defined by(

h- lim inf
n

un

)
(x) = inf

V ∈N (x)
lim inf

n
sup
y∈V

un(y).

Hypo-limit superior is defined by(
h- lim sup

n
un

)
(x) = inf

V ∈N (x)
lim sup

n
sup
y∈V

un(y).

If ∃u ∈ F (R) such that

h- lim inf
n

un = h- lim sup
n

un = u,

then we write u = h- limn un and we say that (un) is h-convergent to u on R.
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The following theorem shows the relationship between hypo-convergence
and convergence of λ-cuts. It is necessary for the proof of Theorem 3.10 that
is related to the convergence of argmax values of a sequence of fuzzy sets.

Theorem 3.5. Let (un) be an upper semicontinuous sequence of fuzzy sets
in F (R). If for each λ ∈ [0, 1], there exists a sequence λn ∈ [0, 1] satisfying

λn → λ with uλ = limn u
λn
n , then un

h→ u.

Proof. Assume that λn → λ. Since uλ = limn u
λn
n , we can use the inclusion

uλ ⊂ lim infn u
λn
n . Let (x, λ) ∈ hypo(u). It means x ∈ uλ and x ∈ lim infn u

λn
n .

Then, there exists n0 and a sequence (xn) satisfying xn → x such that xn ∈ uλn
n

for each n ≥ n0. It is also equal to un(xn) ≥ λn for each n ≥ n0. Then,

(xn, λn) ∈ hypo(un)

for each n ≥ n0 and limn(xn, λn) = (x, λ) which is equal to (x, λ) ∈ lim infn hypo(un)
and hence

hypo(u) ⊂ lim inf
n

hypo(un).

Now we want to show lim supn hypo(un) ⊂ hypo(u). Suppose contrary that
is (x, β) ∈ lim supn hypo(un) but (x, β) /∈ hypo(u). Then we have u(x) < β.
There exists a sequence of integers n1 < n2 < n3 < ... and (xk, βk) ∈ hypo(unk

)
such that

(xk, βk) → (x, β).

Choose a scalar λ satisfying u(x) < λ < β with λn → λ for which uλ =
limn u

λn
n . Then for all k sufficiently large, the inequality λnk

< βk holds and
we get

xk ∈ u
λnk
nk and x ∈ lim sup

n
uλn
n .

Since we have uλ = limn u
λn
n , we can use the inclusion lim supn u

λn
n ⊂ uλ

and it gives x ∈ uλ. Hence λ < u(x) which contradicts u(x) < λ. Consequently,

lim sup
n

hypo(un) ⊂ hypo(u).

The following theorem gives a sequential characterization of the hypo-convergence
of a sequence of fuzzy sets. The importance of this theorem stems from its use
in the proof of Theorem 3.7 which is important for optimization problems.

Theorem 3.6. Let (un) be an upper semicontinuous sequence of fuzzy sets
in F (R) and let x be any point of R. Then, un is hypo-convergent to u ∈ F (R)
if and only if at each point x one has

(i) for every sequence (xn) with xn → x,

lim supn un(xn) ≤ u(x),

(ii) there exists a sequence (xn) with xn → x,

lim infn un(xn) ≥ u(x).
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Proof. Let us first assume that un
h→ u. Let (xn) be an arbitrary sequence

convergent to x. Let α < lim supn un(xn) be arbitrary. Then there exists an
increasing sequence of integers (nk) such that for each k, unk

(xnk
) > α. That

is

(xnk
, α) ∈ hypo(unk

).

Due to our assumption un
h→ u, we have

lim sup
n

hypo(un) ⊂ hypo(u).

We obtain (x, α) ∈ hypo(u) which means α ≤ u(x). Hence we have verified (i).

In order to show (ii), let (x, u(x)) ∈ hypo(u). Since we have un
h→ u, we

can use the inclusion hypo(u) ⊂ lim infn hypo(un). Then there exists N ∈ N ,
for all n ∈ N , ∃(xn, αn) ∈ hypo(un) such that

(xn, αn) → (x, u(x)).

Moreover, for all n ∈ N we have un(xn) ≥ αn. Then we obtain

lim inf
n

un(xn) ≥ u(x).

For the converse, assume (i) and (ii) both hold. First we will show hypo(u) ⊂
lim infn hypo(un). Let (x, α) be fixed with α < u(x). According to our assump-
tion, there exists a sequence (xn) such that lim infn un(xn) ≥ u(x). Then there
exists N ∈ N such that for all n ∈ N , α ≤ un(xn), that is

(xn, α) ∈ hypo(un).

Then we have (x, α) ∈ lim infn hypo(un).
Now we want to show lim supn hypo(un) ⊂ hypo(u). Let (x, α) ∈ lim supn hypo(un).

Then there exists N ∈ N#, for all n ∈ N , ∃(xn, αn) ∈ hypo(un) such that

(xn, αn) → (x, α).

Then, we obtain

α = lim
n∈N

αn ≤ lim inf
n∈N

un(xn)

≤ lim sup
n

un(xn) ≤ u(x)

It gives (x, α) ∈ hypo(u) which concludes the proof.

Theorem 3.7. Let un, u, n = 1, 2, ..., be upper semicontinuous fuzzy sets

in F (R). Suppose un
h→ u. If for every ε > 0

argmaxu =
⋂
ε>0

lim inf
n

(
ε-argmaxun

)
,

then

sup
x∈X

un(x) → sup
x∈X

u(x).
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Proof. For each t ∈ argmaxu and ε > 0, there corresponds a sequence

xn ∈ ε-argmaxun such that xn → t. Since un
h→ u by using Theorem 3.6 (i)

we obtain

sup
x∈X

u(x) = u(t) ≥ lim sup
n

un(xn)

≥ lim sup
n

sup
x∈X

un(x)− ε.(3.1)

Now assume that (x, supx∈X u(x)) ∈ hypo(u). Since un
h→ u we can use the

inclusion hypo(u) ⊆ lim infn hypo(un). Then, there exists (xn, yn) ∈ hypo(un)
such that

(xn, yn) → (x, sup
x∈X

u(x)).

Observe that there exists N ∈ N such that for all n ∈ N we have yn ≤
supx∈X un(x). By taking liminf of both sides we get

(3.2) sup
x∈X

u(x) = lim inf
n

yn ≤ lim inf
n

sup
x∈X

un(x).

supx∈X un(x) → supx∈X u(x) follows from (3.1) and (3.2).

Example 3.8. Let (un) be a sequence of fuzzy sets in F (R) and it is defined
by

un(x) = max{0, 1− n
∣∣x+

1

n

∣∣}.
Obviously, the sequence (un) is hypo-convergent to the fuzzy set u given below.

u(x) =

{
1, if x = 0,
0, otherwise.

The sequence (un) satisfies the conditions in Theorem 3.7, that is⋂
ε>0

lim inf
n

(
ε-argmaxun

)
= argmaxu = {0}.

Hence we have supx∈X un(x) → supx∈X u(x) which means that maximizers of
(un) must maximize u which is an essential property in optimization problems.

Example 3.9. Let (un) be a sequence of fuzzy sets in F (R) and it is defined
by

un(x) =

{
1− 1

n , if x = n,
0, otherwise.

The sequence (un) is hypo-convergent to u(x) = 0. On the other hand,
(un) does not satisfy the conditions in Theorem 3.7 even though it is hypo-
convergent. We obtain

argmaxu = R
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for hypo-limit function u but⋂
ε>0

lim inf
n

(
ε-argmaxun

)
= ∅.

Hence supx∈X un(x) → 1 which is not equal to supx∈X u(x) = 0.

Theorem 3.10. Let un, u, n = 1, 2, ..., be upper semicontinuous fuzzy sets

in F (R). Assume that un
h→ u. If supx∈X un(x) → supx∈X u(x), then ∃εn → 0

such that

(3.3) εn-argmaxun → argmaxu.

Proof. Suppose un
h→ u and βn = supx∈X un(x) → supx∈X u(x) = β. Since

(un) is a sequence of fuzzy sets, (βn) is finite for all n ∈ N. By Theorem 3.5,
there exists a sequence λn → β such that

uλn
n → uβ = argmaxu.

If we write εn = βn − λn, then ∃N ∈ N such that ∀n ∈ N we have

εn-argmaxun = {x | un(x) ≥ supun − εn}
= {x | un(x) ≥ λn}

= uλn
n → uβ = argmaxu.

So far we have dealt with hypo-convergence of sequence of fuzzy sets in
F (R). We have shown the convergence of supremum values of (un) which
is necessary for optimization theory. Convergence of argmax of (un) is as
important as convergence of supremum values of (un). In the last theorem, we
have given the necessary conditions for the convergence

εn-argmaxun → argmaxu.

If we are working on fuzzy numbers, we do not need any condition to achieve
this convergence. Hence, the following corollary will be useful for optimization
problems on fuzzy numbers.

Corollary 3.11. Let un, u, n = 1, 2, ..., be fuzzy numbers in E1. If un
h→ u,

then ∃εn → 0 such that

(3.4) εn-argmaxun → argmaxu.

Proof. The property of normality for fuzzy numbers implies

sup
x∈X

un(x) → sup
x∈X

u(x)

whenever un
h→ u. Thus, the proof is clear from the Theorem 3.10.
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4. Conclusion, future work

Hypo-convergence is used in optimization theory for productivity. Optimal
solutions are found by ensuring the convergence of supremum values. Since
the maximization process in optimization theory is beyond the presence of
hypo-convergence, we have given some conditions to satisfy the convergence
of supremum values. These conditions are very important for obtaining cor-
rect results in optimization. Theorem 3.7 gives the necessary conditions for
supx∈X un(x) → supx∈X u(x). In its proof, sequential characterization of hypo-
convergence is used given by Theorem 3.6. At this stage Example 3.9 is impor-
tant. In this example, the convergence supx∈X un(x) → supx∈X u(x) fails even
though the sequence (un) is hypo-convergent, since (un) does not satisfy the
conditions in Theorem 3.7. In Theorem 3.10, we have given the necessary con-
ditions for the convergence εn-argmaxun → argmaxu. This theorem explains
that the maximizers of a sequence of fuzzy sets (un) converge to the maximizer
of the fuzzy set u. In the proof of the theorem, we have used the relation
between the convergence of lambda cuts and hypo-convergence of a sequence
of fuzzy sets mentioned in Theorem 3.5. In summary, all the theorems in the
main result section are connected.

In some situations, some of the functions may not conform to a usual pattern
and affect the efficiency of optimization process. Moreover, obtaining hypo-
limit function may fail due to disruption of these functions. For that reason,
it may be necessary to use an alternative method that diminishes the effect of
such functions by excluding them from consideration. In our next work, we
will develop a method to eliminate these functions.
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