DOI QR코드

DOI QR Code

HYPO-CONVERGENCE OF SEQUENCES OF FUZZY SETS AND MAXIMIZATION

  • Tortop, Sukru (Department of Mathematics, Faculty of Art and Sciences, Afyon Kocatepe University) ;
  • Dundar, ErdInC (Department of Mathematics, Faculty of Art and Sciences, Afyon Kocatepe University)
  • Received : 2022.06.09
  • Accepted : 2022.07.28
  • Published : 2022.09.01

Abstract

In optimization theory, hypo-convergence is considered as an effective tool by providing the convergence of supremum values under some conditions. This feature makes it different from other types of convergence. Therefore, we have defined the hypo-convergence of a sequence of fuzzy sets due to the increasing interest in fuzzy set theory in recent years. After giving a theoretical framework, we deal with the optimization process by using a sequential characterization of hypo-convergence of sequence of fuzzy sets. Since the maximization process in optimization theory is beyond the presence of hypo-convergence, we give some conditions to satisfy the convergence of supremum values. Furthermore, we show how sequence of fuzzy sets and fuzzy numbers differ in the convergence of the supremum values.

Keywords

References

  1. H. Attouch, Variational Convergence for Functions and Operators, Pitman Advanced Pub. Program, Boston, 1984.
  2. S. Aytar, S. Pehlivan, and M. Mammadov, The core of a sequence of fuzzy numbers, Fuzzy Sets and Systems 159 (2008), no. 24, 3369-3379. https://doi.org/10.1016/j.fss.2008.03.027
  3. T. Fan, Endographic approach on supremum and infimum of fuzzy numbers, Inf. Sci. 159 (2004), 221-231. https://doi.org/10.1016/j.ins.2003.08.008
  4. G. H. Greco, M. P. Moschen, and E. Quelho Frota Rezende, On the variational convergence for fuzzy sets in metric spaces, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 44 (1998), 27-39. https://doi.org/10.1007/BF02828014
  5. D. H. Hong, E. L. Moon, and J. D. Kim, A note on the core of fuzzy numbers, Applied Mathematics Letters 23 (2010), no. 5, 651-655. https://doi.org/10.1016/j.aml.2010.02.006
  6. H. Huang, Characterizations of endograph metric and Γ-convergence on fuzzy sets, Fuzzy Sets Syst. 350 (2018), 55-84. https://doi.org/10.1016/j.fss.2018.02.014
  7. A. J. King and R. Wets, Epi-consistency of convex stochastic programs, Stochastics Stochastics Rep. 34 (1991), 83-92. https://doi.org/10.1080/17442509108833676
  8. P.E. Kloeden, Compact supported endographs and fuzzy sets, Fuzzy Sets Syst. 4 (1980), no. 2, 193-201. https://doi.org/10.1016/0165-0114(80)90036-6
  9. C. Kuratowski, Topologie. Vol. I, PWN, Warszawa, 1958.
  10. G. D. Maso, An introduction to Γ-convergence, Vol. 8, Boston, 1993.
  11. M. Matloka, Sequences of fuzzy numbers, BUSEFAL 28 (1986), 28-37.
  12. U. Mosco,Convergence of convex sets and of solutions of variational inequalities, Adv. Math. 3 (1969), 510-585. https://doi.org/10.1016/0001-8708(69)90009-7
  13. S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems 33 (1989), 123-126. https://doi.org/10.1016/0165-0114(89)90222-4
  14. T. Pedraza, J. Rodriguez-Lapez, and S. Romaguera, Convergence of fuzzy sets with respect to the supremum metric, Fuzzy Sets Syst. 245 (2014), 83-100. https://doi.org/10.1016/j.fss.2014.03.005
  15. T. Pennanen, Epi-convergent discretizations of multistage stochastic programs, Mathematics of Operations Research 30 (2005), no. 1, 245-256. https://doi.org/10.1287/moor.1040.0114
  16. R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin, 1998.
  17. M. Rojas-Medar and H. Rom'an-Flores, On the equivalence of convergences of fuzzy sets, Fuzzy Sets Syst. 80 (1996), 217-224. https://doi.org/10.1016/0165-0114(95)00182-4
  18. G. Salinetti and R. J-B. Wets, On the relation between two types of convergence for convex functions, J. Math. Anal. Appl. 60 (1977), 211-226. https://doi.org/10.1016/0022-247X(77)90060-9
  19. O. Talo and C. Cakan, The extension of the Knopp core theorem to the sequences of fuzzy numbers, Information Sciences 276 (2014), 10-20. https://doi.org/10.1016/j.ins.2014.02.042
  20. O. Talo, Some properties of limit inferior and limit superior for sequences of fuzzy real numbers, Information Sciences 279 (2014), 560-568. https://doi.org/10.1016/j.ins.2014.04.011
  21. S. Tortop, Sequential characterization of statistical epi-convergence, Soft Computing 24 (2020), 18565-18571. https://doi.org/10.1007/s00500-020-05092-3
  22. R. J-B. Wets, Convergence of convex functions, variational inequalities and convex optimization problems, New York, 1980.
  23. R. A. Wijsman, Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc. 70 (1964), 186-188. https://doi.org/10.1090/S0002-9904-1964-11072-7
  24. R. A. Wijsman, Convergence of sequences of convex sets, cones and functions II, Trans. Amer. Math. Soc. 123 (1966), 32-45. https://doi.org/10.1090/S0002-9947-1966-0196599-8
  25. L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  26. L. A. Zadeh, The concept of linguistic variable and its application to approximate reasoning-I, Information Sciences 8 (1975), no. 3, 199-249. https://doi.org/10.1016/0020-0255(75)90036-5
  27. L. A. Zadeh, The concept of linguistic variable and its application to approximate reasoning-I, Information Sciences 8 (1975), no. 4, 301-357. https://doi.org/10.1016/0020-0255(75)90046-8
  28. L. A. Zadeh, The concept of linguistic variable and its application to approximate reasoning-I, Information Sciences 9 (1975), no. 1, 43-80. https://doi.org/10.1016/0020-0255(75)90017-1
  29. H.-J. Zimmermann, Fuzzy Set Theory and its Applications, 4th Edition, Norwell, Kluwer, MA, 2001.