• Title/Summary/Keyword: optimization approach

Search Result 2,369, Processing Time 0.031 seconds

Optimal Process Design in Non-Steady Metal Forming by the Design Sensitivity (설계민감도를 이용한 비정상상태 소성가공공정 최적 설계)

  • 정석환;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.113-118
    • /
    • 1997
  • A new approach to process optimal design in non-isothermal, non-steady state metal forming is presented. In this approach, the optimal design problem is formulated on the basis of the integrated thermo-mechanical finite element process model so as to cover a wide range of the objective functions and design variables, and the derivative based approach is adopted for conducting optimization by design iteration. The process model, the formulation for process optimal design, and the procedures for the evaluation of the design sensitivity and for design iteration for optimization are described.

  • PDF

Modified complex mode superposition design response spectrum method and parameters optimization for linear seismic base-isolation structures

  • Huang, Dong-Mei;Ren, Wei-Xin;Mao, Yun
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.341-363
    • /
    • 2013
  • Earthquake response calculation, parametric analysis and seismic parameter optimization of base-isolated structures are some critical issues for seismic design of base-isolated structures. To calculate the earthquake responses for such non-symmetric and non-classical damping linear systems and to implement the earthquake resistant design codes, a modified complex mode superposition design response spectrum method is put forward. Furthermore, to do parameter optimization for base-isolation structures, a graphical approach is proposed by analyzing the relationship between the base shear ratio of a seismic base-isolation floor to non-seismic base-isolation one and frequency ratio-damping ratio, as well as the relationship between the seismic base-isolation floor displacement and frequency ratio-damping ratio. In addition, the influences of mode number and site classification on the seismic base-isolation structure and corresponding optimum parameters are investigated. It is demonstrated that the modified complex mode superposition design response spectrum method is more precise and more convenient to engineering applications for utilizing the damping reduction factors and the design response spectrum, and the proposed graphical approach for parameter optimization of seismic base-isolation structures is compendious and feasible.

A Hierarchical Approach for Design Analysis and Optimization of Framed Structures (프레임 구조의 계층적 설계 해석 및 최적화)

  • Hwang, Jin Ha;Lee, Hak Sool
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.93-102
    • /
    • 2000
  • Substructuring-based hierarchical approach for design analysis and optimization of structural frames is presented in this study. The conceptual framework of this method is in the hierarchical modeling for design processes as well as structural systems and the methodology combining substructuring analysis and multilevel optimization. Mathematical models for analysis and synthesis are established on the common basis of substructuring systems. Modularized behavioral analysis, design sensitivity analysis and optimization are linked and integrated on the mathematical and structural basis of substructuring. Substructures are coordinated with the active constraints for system level and the weight ratio criteria. Numerical examples for test frames show the validity and effectiveness of the present approach.

  • PDF

Multiobjective Optimization of Three-Stage Spur Gear Reduction Units Using Interactive Physical Programming

  • Huang Hong Zhong;Tian Zhi Gang;Zuo Ming J.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1080-1086
    • /
    • 2005
  • The preliminary design optimization of multi-stage spur gear reduction units has been a subject of considerable interest, since many high-performance power transmission applications (e.g., automotive and aerospace) require high-performance gear reduction units. There are multiple objectives in the optimal design of multi-stage spur gear reduction unit, such as minimizing the volume and maximizing the surface fatigue life. It is reasonable to formulate the design of spur gear reduction unit as a multi-objective optimization problem, and find an appropriate approach to solve it. In this paper an interactive physical programming approach is developed to place physical programming into an interactive framework in a natural way. Class functions, which are used to represent the designer's preferences on design objectives, are fixed during the interactive physical programming procedure. After a Pareto solution is generated, a preference offset is added into the class function of each objective based on whether the designer would like to improve this objective or sacrifice the objective so as to improve other objectives. The preference offsets are adjusted during the interactive physical programming procedure, and an optimal solution that satisfies the designer's preferences is supposed to be obtained by the end of the procedure. An optimization problem of three-stage spur gear reduction unit is given to illustrate the effectiveness of the proposed approach.

Topology Optimization for Large-displacement Compliant Mechanisms Using Element Free Galerkin Method

  • Du, Yixian;Chen, Liping
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • This paper presents a topology optimization approach using element-free Galerkin method (EFGM) for the optimal design of compliant mechanisms with geometrically non-linearity. Meshless method has an advantage over the finite element method(FEM) because it is more capable of handling large deformation resulted from geometrical nonlinearity. Therefore, in this paper, EFGM is employed to discretize the governing equations and the bulk density field. The sensitivity analysis of the optimization problem is performed by incorporating the adjoint approach with the meshless method. The Lagrange multipliers method adjusted for imposition of both the concentrated and continuous essential boundary conditions in the EFGM is proposed in details. The optimization mathematical formulation is developed to convert the multi-criteria problem to an equivalent single-objective problem. The popularly applied interpolation scheme, solid isotropic material with penalization (SIMP), is used to indicate the dependence of material property upon on pseudo densities discretized to the integration points. A well studied numerical example has been applied to demonstrate the proposed approach works very well and the non-linear EFGM can obtain the better topologies than the linear EFGM to design large-displacement compliant mechanisms.

Dynamic Programming Approach for Determining Optimal Levels of Technical Attributes in QFD under Multi-Segment Market (다수의 개별시장 하에서 QFD의 기술속성의 최적 값을 결정하기 위한 동적 계획법)

  • Yoo, Jaewook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.2
    • /
    • pp.120-128
    • /
    • 2015
  • Quality function deployment (QFD) is a useful method in product design and development to maximize customer satisfaction. In the QFD, the technical attributes (TAs) affecting the product performance are identified, and product performance is improved to optimize customer requirements (CRs). For product development, determining the optimal levels of TAs is crucial during QFD optimization. Many optimization methods have been proposed to obtain the optimal levels of TAs in QFD. In these studies, the levels of TAs are assumed to be continuous while they are often taken as discrete in real world application. Another assumption in QFD optimization is that the requirements of the heterogeneous customers can be generalized and hence only one house of quality (HoQ) is used to connect with CRs. However, customers often have various requirements and preferences on a product. Therefore, a product market can be partitioned into several market segments, each of which contains a number of customers with homogeneous preferences. To overcome these problems, this paper proposes an optimization approach to find the optimal set of TAs under multi-segment market. Dynamic Programming (DP) methodology is developed to maximize the overall customer satisfaction for the market considering the weights of importance of different segments. Finally, a case study is provided for illustrating the proposed optimization approach.

GA-VNS-HC Approach for Engineering Design Optimization Problems (공학설계 최적화 문제 해결을 위한 GA-VNS-HC 접근법)

  • Yun, YoungSu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.1
    • /
    • pp.37-48
    • /
    • 2022
  • In this study, a hybrid meta-heuristic approach is proposed for solving engineering design optimization problems. Various approaches in many literatures have been proposed to solve engineering optimization problems with various types of decision variables and complex constraints. Unfortunately, however, their efficiencies for locating optimal solution do not be highly improved. Therefore, we propose a hybrid meta-heuristic approach for improving their weaknesses. the proposed GA-VNS-HC approach is combining genetic algorithm (GA) for global search with variable neighborhood search (VNS) and hill climbing (HC) for local search. In case study, various types of engineering design optimization problems are used for proving the efficiency of the proposed GA-VNS-HC approach

Combinatorial particle swarm optimization for solving blocking flowshop scheduling problem

  • Eddaly, Mansour;Jarboui, Bassem;Siarry, Patrick
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.295-311
    • /
    • 2016
  • This paper addresses to the flowshop scheduling problem with blocking constraints. The objective is to minimize the makespan criterion. We propose a hybrid combinatorial particle swarm optimization algorithm (HCPSO) as a resolution technique for solving this problem. At the initialization, different priority rules are exploited. Experimental study and statistical analysis were performed to select the most adapted one for this problem. Then, the swarm behavior is tested for solving a combinatorial optimization problem such as a sequencing problem under constraints. Finally, an iterated local search algorithm based on probabilistic perturbation is sequentially introduced to the particle swarm optimization algorithm for improving the quality of solution. The computational results show that our approach is able to improve several best known solutions of the literature. In fact, 76 solutions among 120 were improved. Moreover, HCPSO outperforms the compared methods in terms of quality of solutions in short time requirements. Also, the performance of the proposed approach is evaluated according to a real-world industrial problem.

Multiresponse Optimization: A Literature Review and Research Opportunities (다중반응표면최적화 : 현황 및 향후 연구방향)

  • Jeong, In-Jun
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.3
    • /
    • pp.377-390
    • /
    • 2011
  • A common problem encountered in product or process design is the selection of optimal parameter levels which involves simultaneous consideration of multiple response variables. This is called a multiresponse problem. A multiresponse problem is solved through three major stages: data collection, model building, and optimization. Up to date, various methods have been proposed for the optimization, including the desirability function approach and loss function approach. In this paper, the existing studies in multiresponse optimization are reviewed and a future research direction is then proposed.

DEVELOPMENT OF AERODYNAMIC SHAPE OPTIMIZATION TOOLS FOR MULTIPLE-BODY AIRCRAFT GEOMETRIES OVER TRANSONIC TURBULENT FLow REGIME (천음속 난류 유동장에서의 다중체 항공기 형상의 공력 설계 도구의 개발)

  • Lee, B.J.;Lee, J.S.;Yim, J.W.;Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.100-110
    • /
    • 2007
  • A new design approach for a delicate treatment of complex geometries such as a wing/body configuration is arranged using overset mesh technique under large scale computing environment for turbulent viscous flow. Various pre- and post-processing techniques which are required of overset flow analysis and sensitivity analysis codes are discussed for design optimization problems based on gradient based optimization method (GBOM). The overset flow analysis code is validated by comparing with the experimental data of a wing/body configuration (DLR-F4) from the 1st Drag Prediction Workshop (DPW-I). In order to examine the applicability of the present design tools, careful design works for the drag minimization problem of a wing/body configuration are carried out by using the developed aerodynamic shape optimization tools for the viscous flow over multiple-body aircraft geometries.

  • PDF