DOI QR코드

DOI QR Code

GA-VNS-HC Approach for Engineering Design Optimization Problems

공학설계 최적화 문제 해결을 위한 GA-VNS-HC 접근법

  • 윤영수 (조선대학교 경상대학 경영학부)
  • Received : 2022.01.12
  • Accepted : 2022.01.26
  • Published : 2022.02.28

Abstract

In this study, a hybrid meta-heuristic approach is proposed for solving engineering design optimization problems. Various approaches in many literatures have been proposed to solve engineering optimization problems with various types of decision variables and complex constraints. Unfortunately, however, their efficiencies for locating optimal solution do not be highly improved. Therefore, we propose a hybrid meta-heuristic approach for improving their weaknesses. the proposed GA-VNS-HC approach is combining genetic algorithm (GA) for global search with variable neighborhood search (VNS) and hill climbing (HC) for local search. In case study, various types of engineering design optimization problems are used for proving the efficiency of the proposed GA-VNS-HC approach

본 연구에서는 공학설계 최적화 문제 해결을 위한 혼합 메타휴리스틱(Hybrid Meta-heuristic) 접근법을 제안된다. 공학 설계 최적화 문제는 다양한 형태의 변수를 가지며, 복잡한 제약조건들하에서 그 최적해를 구하는 문제로 이미 많은 기존 연구들을 통해 다양한 접근법들이 개발되어져 왔다. 하지만 그 효율성은 아직까지 크게 개선되지 못하고 있는 실정이다. 따라서 본 연구에서는 이러한 효율성을 개선하기 위한 새로운 접근법을 제안한다. 제안된 혼합 메타휴리스틱 접근법은 탐색 공간에 대한 전역적 탐색을 위해 유전알고리즘(Genetic Algorithm: GA) 접근법, 지역적 탐색을 위해 변동이웃탐색(Variable Neighborhood Search: VNS) 접근법과 언덕오르기(Hill Climbing: HC) 접근법을 혼합(GA-VNS-HC)하였다. 사례 연구에서는 다양한 형태의 공학설계 최적화 문제를 이용하여 본 연구에서 제안한 GA-VNS-HC 접근법의 우수성을 입증하였다.

Keywords

Acknowledgement

이 논문은 2020학년도 조선대학교 학술연구비의 지원을 받아 연구되었음.

References

  1. Amir, H. M., and Hasegawa, T. (1989). Nonlinear mixed-discrete structural optimization. Journal of Structural Engineering, 115(3), 626-646. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:3(626)
  2. Babaie-Kafaki, S., Ghanbari, R., and Mahdavi-Amiri, N. (2016). Hybridizations of genetic algorithms and neighborhood search metaheuristics for fuzzy bus terminal location problems, Applied Soft Computing, 46, 220-229. https://doi.org/10.1016/j.asoc.2016.03.005
  3. Castelli, M., and Vanneschi, L. (2014). Genetic algorithm with variable neighborhood search for the optimal allocation of goods in shop shelves, Operations Research Letters, 42, 355-360. https://doi.org/10.1016/j.orl.2014.06.002
  4. Dib, O., Manier, M.-A., Moalic, L., and Caminada. A. (2017). Combining VNS with genetic algorithm to solve the one-to-one routing issue in road networks, Computers and Operations Research, 78, 420-430. https://doi.org/10.1016/j.cor.2015.11.010
  5. Fu, J. F., Fenton, R. G., and Cleghorn, W. L. (1991). A mixed integer-discrete-continuous programming method and its applications to engineering design optimization, Engineering Optimization, 17, 263-280 https://doi.org/10.1080/03052159108941075
  6. Gandomi, A. H., and Yang, X-S. (2011). Benchmark problems in structural optimization, In Koziel, S. and Yang, X-S. (Eds.), Computational Optimization, Methods and Algorithms, Springer-Verlag, Berlin, 267-291.
  7. Gandomi, A. H., Yang, X-S., and Alavi, A. H. (2013). Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Engineering with Computers, 29, 17-35. https://doi.org/10.1007/s00366-011-0241-y
  8. Gen, M., Lin, L., Yun, Y. S., and Inoue, H. (2018). Recent advances in hybrid priority-based genetic algorithms for logistics and SCM network design, Computers and Industrial Engineering, 125, 394-412 https://doi.org/10.1016/j.cie.2018.08.025
  9. Kuo, W., Prasad, V. R., Tillman, F., and Hwang, C. L. (2001). Optimal Reliability Design: Fundamentals and Applications, Cambridge Univ. Press, 2001.
  10. Kvalie, D. (1967). Optimization of Plane Elastic Grillages, PhD Thesis, Norges Teknisk Naturvitenskapelige Universitet, Norway.
  11. Lin, C.-Y., and Hajela, P. (1991). Genetic algorithm in optimization problems with discrete and integer design variables, Engineering Optimization, 16,(4), 309-327.
  12. Maputi, E. S., and Arora, R. (2019). Multi-objective spur gear design using teaching learning-based optimization and decision-making techniques, Cogent Engineering, 6, 1665396, doi.org/10.1080/23311916.2019.1665396
  13. Mladenovic, N., and Hansen, P. (1997). Variable neighborhood search, Computers and Operations Research, 24(11), 1097-1100. https://doi.org/10.1016/S0305-0548(97)00031-2
  14. Sandgren, E. (1990). Nonlinear integer and discrete programming in mechanical design optimization, ASME Journal of Mechanical Design, 112(2), 223-229. https://doi.org/10.1115/1.2912596
  15. Sbai, I., Krichen, S., and Limam, O. (2020). Two meta-heuristics for solving the capacitated vehicle routing problem: The case of the Tunisian post office, Operational Research, 20, 2085-2108. https://doi.org/10.1007/s12351-018-0403-4
  16. Wen, Y., Xu, H., and Yang, J. (2011). A heuristic-based hybrid genetic-variable neighborhood search algorithm for task scheduling in heterogeneous multiprocessor system, Information Sciences, 181, 567-581. https://doi.org/10.1016/j.ins.2010.10.001
  17. Wu, S. J., and Chow, P. T. (1995). Genetic algorithms for nonlinear mixed discrete-integer optimization problems via meta-genetic parameter optimization, Engineering Optimization, 24, 137-159. https://doi.org/10.1080/03052159508941187
  18. Yarushkina, N. G. (2002). Genetic algorithms for engineering optimization: theory and practice, Proceedings of the 2002 IEEE International Conference on Artificial Intelligence Systems (ICAIS'02), 357-362.
  19. Yokota, T., Taguchi, T., and Gen, M. (1999). A solution method for optimal cost problem of welded beam by using genetic algorithms, Computers and Industrial Engineering, 37(1-2), 379-382. https://doi.org/10.1016/S0360-8352(99)00098-4
  20. Yun, Y. S., Chuluunsukh, A., Gen, M. (2020). Sustainable closed-loop supply chain design problem: A hybrid genetic algorithm approach, Mathematics, 8(1), 84, https://doi.org/10.3390/math8010084.
  21. Yun, Y. S., and Moon, C. U. (2003). Comparison of adaptive genetic algorithms for engineering optimization problems, International Journal of Industrial Engineering, 10(4), 584-590.