• 제목/요약/키워드: optimization approach

검색결과 2,364건 처리시간 0.025초

설계민감도를 이용한 비정상상태 소성가공공정 최적 설계 (Optimal Process Design in Non-Steady Metal Forming by the Design Sensitivity)

  • 정석환;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.113-118
    • /
    • 1997
  • A new approach to process optimal design in non-isothermal, non-steady state metal forming is presented. In this approach, the optimal design problem is formulated on the basis of the integrated thermo-mechanical finite element process model so as to cover a wide range of the objective functions and design variables, and the derivative based approach is adopted for conducting optimization by design iteration. The process model, the formulation for process optimal design, and the procedures for the evaluation of the design sensitivity and for design iteration for optimization are described.

  • PDF

Modified complex mode superposition design response spectrum method and parameters optimization for linear seismic base-isolation structures

  • Huang, Dong-Mei;Ren, Wei-Xin;Mao, Yun
    • Earthquakes and Structures
    • /
    • 제4권4호
    • /
    • pp.341-363
    • /
    • 2013
  • Earthquake response calculation, parametric analysis and seismic parameter optimization of base-isolated structures are some critical issues for seismic design of base-isolated structures. To calculate the earthquake responses for such non-symmetric and non-classical damping linear systems and to implement the earthquake resistant design codes, a modified complex mode superposition design response spectrum method is put forward. Furthermore, to do parameter optimization for base-isolation structures, a graphical approach is proposed by analyzing the relationship between the base shear ratio of a seismic base-isolation floor to non-seismic base-isolation one and frequency ratio-damping ratio, as well as the relationship between the seismic base-isolation floor displacement and frequency ratio-damping ratio. In addition, the influences of mode number and site classification on the seismic base-isolation structure and corresponding optimum parameters are investigated. It is demonstrated that the modified complex mode superposition design response spectrum method is more precise and more convenient to engineering applications for utilizing the damping reduction factors and the design response spectrum, and the proposed graphical approach for parameter optimization of seismic base-isolation structures is compendious and feasible.

프레임 구조의 계층적 설계 해석 및 최적화 (A Hierarchical Approach for Design Analysis and Optimization of Framed Structures)

  • 황진하;이학술
    • 한국강구조학회 논문집
    • /
    • 제12권1호통권44호
    • /
    • pp.93-102
    • /
    • 2000
  • 본 연구는 부구조화에 기초한 계층적 접근방법을 이용하여 프레임구조에 대한 설계민감도해석과 최적화를 수행한다. 이 방법의 개념적 틀은 유형의 구조계와 무형의 설계과정을 계층적으로 모델링하고 부구조화해석과 다단계최적화를 결합하는데 있다. 여기서 해석과 총합을 위한 수학적 모델은 공통의 부구조화체계와 기반위에서 설정된다. 이러한 수학적 구조적 기반위에서 모듈화된 거동해석과 민감도해석 및 최적화과정이 서로 연계되고 통합된다. 여기서 설계민감도정보는 상태공간방법으로 계산되고, 시스템단계의 활성조건과 중량비 규준을 통해 부구조들의 조율이 이루어진다. 대형프레임구조에 대한 수치 예제들을 통해 본 연구의 타당성 및 효율성과 유용성을 검증한다.

  • PDF

Multiobjective Optimization of Three-Stage Spur Gear Reduction Units Using Interactive Physical Programming

  • Huang Hong Zhong;Tian Zhi Gang;Zuo Ming J.
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1080-1086
    • /
    • 2005
  • The preliminary design optimization of multi-stage spur gear reduction units has been a subject of considerable interest, since many high-performance power transmission applications (e.g., automotive and aerospace) require high-performance gear reduction units. There are multiple objectives in the optimal design of multi-stage spur gear reduction unit, such as minimizing the volume and maximizing the surface fatigue life. It is reasonable to formulate the design of spur gear reduction unit as a multi-objective optimization problem, and find an appropriate approach to solve it. In this paper an interactive physical programming approach is developed to place physical programming into an interactive framework in a natural way. Class functions, which are used to represent the designer's preferences on design objectives, are fixed during the interactive physical programming procedure. After a Pareto solution is generated, a preference offset is added into the class function of each objective based on whether the designer would like to improve this objective or sacrifice the objective so as to improve other objectives. The preference offsets are adjusted during the interactive physical programming procedure, and an optimal solution that satisfies the designer's preferences is supposed to be obtained by the end of the procedure. An optimization problem of three-stage spur gear reduction unit is given to illustrate the effectiveness of the proposed approach.

Topology Optimization for Large-displacement Compliant Mechanisms Using Element Free Galerkin Method

  • Du, Yixian;Chen, Liping
    • International Journal of CAD/CAM
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 2009
  • This paper presents a topology optimization approach using element-free Galerkin method (EFGM) for the optimal design of compliant mechanisms with geometrically non-linearity. Meshless method has an advantage over the finite element method(FEM) because it is more capable of handling large deformation resulted from geometrical nonlinearity. Therefore, in this paper, EFGM is employed to discretize the governing equations and the bulk density field. The sensitivity analysis of the optimization problem is performed by incorporating the adjoint approach with the meshless method. The Lagrange multipliers method adjusted for imposition of both the concentrated and continuous essential boundary conditions in the EFGM is proposed in details. The optimization mathematical formulation is developed to convert the multi-criteria problem to an equivalent single-objective problem. The popularly applied interpolation scheme, solid isotropic material with penalization (SIMP), is used to indicate the dependence of material property upon on pseudo densities discretized to the integration points. A well studied numerical example has been applied to demonstrate the proposed approach works very well and the non-linear EFGM can obtain the better topologies than the linear EFGM to design large-displacement compliant mechanisms.

다수의 개별시장 하에서 QFD의 기술속성의 최적 값을 결정하기 위한 동적 계획법 (Dynamic Programming Approach for Determining Optimal Levels of Technical Attributes in QFD under Multi-Segment Market)

  • 유재욱
    • 산업경영시스템학회지
    • /
    • 제38권2호
    • /
    • pp.120-128
    • /
    • 2015
  • Quality function deployment (QFD) is a useful method in product design and development to maximize customer satisfaction. In the QFD, the technical attributes (TAs) affecting the product performance are identified, and product performance is improved to optimize customer requirements (CRs). For product development, determining the optimal levels of TAs is crucial during QFD optimization. Many optimization methods have been proposed to obtain the optimal levels of TAs in QFD. In these studies, the levels of TAs are assumed to be continuous while they are often taken as discrete in real world application. Another assumption in QFD optimization is that the requirements of the heterogeneous customers can be generalized and hence only one house of quality (HoQ) is used to connect with CRs. However, customers often have various requirements and preferences on a product. Therefore, a product market can be partitioned into several market segments, each of which contains a number of customers with homogeneous preferences. To overcome these problems, this paper proposes an optimization approach to find the optimal set of TAs under multi-segment market. Dynamic Programming (DP) methodology is developed to maximize the overall customer satisfaction for the market considering the weights of importance of different segments. Finally, a case study is provided for illustrating the proposed optimization approach.

공학설계 최적화 문제 해결을 위한 GA-VNS-HC 접근법 (GA-VNS-HC Approach for Engineering Design Optimization Problems)

  • 윤영수
    • 한국산업정보학회논문지
    • /
    • 제27권1호
    • /
    • pp.37-48
    • /
    • 2022
  • 본 연구에서는 공학설계 최적화 문제 해결을 위한 혼합 메타휴리스틱(Hybrid Meta-heuristic) 접근법을 제안된다. 공학 설계 최적화 문제는 다양한 형태의 변수를 가지며, 복잡한 제약조건들하에서 그 최적해를 구하는 문제로 이미 많은 기존 연구들을 통해 다양한 접근법들이 개발되어져 왔다. 하지만 그 효율성은 아직까지 크게 개선되지 못하고 있는 실정이다. 따라서 본 연구에서는 이러한 효율성을 개선하기 위한 새로운 접근법을 제안한다. 제안된 혼합 메타휴리스틱 접근법은 탐색 공간에 대한 전역적 탐색을 위해 유전알고리즘(Genetic Algorithm: GA) 접근법, 지역적 탐색을 위해 변동이웃탐색(Variable Neighborhood Search: VNS) 접근법과 언덕오르기(Hill Climbing: HC) 접근법을 혼합(GA-VNS-HC)하였다. 사례 연구에서는 다양한 형태의 공학설계 최적화 문제를 이용하여 본 연구에서 제안한 GA-VNS-HC 접근법의 우수성을 입증하였다.

Combinatorial particle swarm optimization for solving blocking flowshop scheduling problem

  • Eddaly, Mansour;Jarboui, Bassem;Siarry, Patrick
    • Journal of Computational Design and Engineering
    • /
    • 제3권4호
    • /
    • pp.295-311
    • /
    • 2016
  • This paper addresses to the flowshop scheduling problem with blocking constraints. The objective is to minimize the makespan criterion. We propose a hybrid combinatorial particle swarm optimization algorithm (HCPSO) as a resolution technique for solving this problem. At the initialization, different priority rules are exploited. Experimental study and statistical analysis were performed to select the most adapted one for this problem. Then, the swarm behavior is tested for solving a combinatorial optimization problem such as a sequencing problem under constraints. Finally, an iterated local search algorithm based on probabilistic perturbation is sequentially introduced to the particle swarm optimization algorithm for improving the quality of solution. The computational results show that our approach is able to improve several best known solutions of the literature. In fact, 76 solutions among 120 were improved. Moreover, HCPSO outperforms the compared methods in terms of quality of solutions in short time requirements. Also, the performance of the proposed approach is evaluated according to a real-world industrial problem.

다중반응표면최적화 : 현황 및 향후 연구방향 (Multiresponse Optimization: A Literature Review and Research Opportunities)

  • 정인준
    • 품질경영학회지
    • /
    • 제39권3호
    • /
    • pp.377-390
    • /
    • 2011
  • A common problem encountered in product or process design is the selection of optimal parameter levels which involves simultaneous consideration of multiple response variables. This is called a multiresponse problem. A multiresponse problem is solved through three major stages: data collection, model building, and optimization. Up to date, various methods have been proposed for the optimization, including the desirability function approach and loss function approach. In this paper, the existing studies in multiresponse optimization are reviewed and a future research direction is then proposed.

천음속 난류 유동장에서의 다중체 항공기 형상의 공력 설계 도구의 개발 (DEVELOPMENT OF AERODYNAMIC SHAPE OPTIMIZATION TOOLS FOR MULTIPLE-BODY AIRCRAFT GEOMETRIES OVER TRANSONIC TURBULENT FLow REGIME)

  • 이병준;이준석;임진우;김종암
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.100-110
    • /
    • 2007
  • A new design approach for a delicate treatment of complex geometries such as a wing/body configuration is arranged using overset mesh technique under large scale computing environment for turbulent viscous flow. Various pre- and post-processing techniques which are required of overset flow analysis and sensitivity analysis codes are discussed for design optimization problems based on gradient based optimization method (GBOM). The overset flow analysis code is validated by comparing with the experimental data of a wing/body configuration (DLR-F4) from the 1st Drag Prediction Workshop (DPW-I). In order to examine the applicability of the present design tools, careful design works for the drag minimization problem of a wing/body configuration are carried out by using the developed aerodynamic shape optimization tools for the viscous flow over multiple-body aircraft geometries.

  • PDF