• Title/Summary/Keyword: optimal planning

Search Result 1,260, Processing Time 0.03 seconds

Optimal Operation Scheme of MicroGrid System based on Renewable Energy Resources (신재생 에너지원 기반의 마이크로그리드 최적운영 방안)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;Lee, Sang-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1467-1472
    • /
    • 2011
  • This paper presents an optimal operation of microgrid systems and considering a tie-lines capacities that concerned each grid. The microgrid system consists of a wind turbine, a diesel generator, and a fuel cell. An one day load profile and wind resource for wind turbine generator were used for the study. For the grid interconnection, tie-line capacities were applied as constraints. The capacity constraints of tie-lines in production cost analysis are very important issues in the operation and planning of microgrid. In optimization, the Harmony Search (HS) algorithm is used for solving the problem of microgrid system operation which a various generation resources are available to meet the customer load demand with minimum operating cost. The application of HS algorithm to optimal operation of microgrid proves its effectiveness to determine optimally the generating resources without any differences of load mismatch.

Trajectory Planning of Satellite Formation Flying using Nonlinear Programming and Collocation

  • Lim, Hyung-Chu;Bang, Hyo-Choong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.361-374
    • /
    • 2008
  • Recently, satellite formation flying has been a topic of significant research interest in aerospace society because it provides potential benefits compared to a large spacecraft. Some techniques have been proposed to design optimal formation trajectories minimizing fuel consumption in the process of formation configuration or reconfiguration. In this study, a method is introduced to build fuel-optimal trajectories minimizing a cost function that combines the total fuel consumption of all satellites and assignment of fuel consumption rate for each satellite. This approach is based on collocation and nonlinear programming to solve constraints for collision avoidance and the final configuration. New constraints of nonlinear equality or inequality are derived for final configuration, and nonlinear inequality constraints are established for collision avoidance. The final configuration constraints are that three or more satellites should form a projected circular orbit and make an equilateral polygon in the horizontal plane. Example scenarios, including these constraints and the cost function, are simulated by the method to generate optimal trajectories for the formation configuration and reconfiguration of multiple satellites.

A Estimation Method for Ratio of Generator Composition included Combined Heat and Power Using Screening Curve Method (열병합발전이 고려된 심사곡선법에 의한 전원구성 비율 산정방법의 연구)

  • Kim, Yong-Ha;Lee, Buhm;Choi, Sang-Kyu;Kim, Mi-Ye;Yeon, Jun-Hee;Kim, Myung-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.736-738
    • /
    • 2005
  • For calculating optimal generation composition of The Basic Plan of Long Term Electricity Supply & Demand, the Screening Curve Method that using generation cost for planning is needed. This paper will induce optimal power system ratio included Combined Head and Power and suggest the method for optimal generation composition of The Basic Plan of Long Term Electricity Supply & Demand that considered policy side.

  • PDF

The Unit Commitment Using the Sensitivity Factor of Security Constrained Optimal Power Flow (SC-OPF의 민감도 계수를 이용한 발전기 기동.정지계획)

  • Kim, Kwang-Mo;Chung, Koo-Hyung;Han, Seok-Man;Kim, Bal-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.416-417
    • /
    • 2006
  • The recent movement to deregulated and competitive electricity market requires new concepts against existing central dispatch in the system operation and planning. As power systems tend to be operated more closely to their ultimate ratings, the role of SCOPF(Security Constrained Optimal Power Flow) is changed. This paper deals with the proper Unit Commitment condition changed according to the conditions or configuration of power system. This goal of is paper is to obtain proper security and Optimal UC condition through the efficient usage of the sensitivity Factor against critical contingencies. The proposed mechanism has been tested on a sample system and results show more secure conditions against critical contingencies.

  • PDF

Optimal path planing of Indoor Automatic Robot using Dynamic Programming (동적계획법을 이용한 실내 자율이동 로봇의 최적 경로 계획)

  • Ko, Su-Hong;Gim, Seong-Chan;Choi, Jong-Young;Kim, Jong-Man;Kim, Hyong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.551-553
    • /
    • 2006
  • An autonomous navigation technology for the mobile robot is investigated in this paper. The proposed robot path planning algorithm employs the dynamic programming to find the optimal path. The algorithm finds the global optimal path through the local computation on the environmental map. Since the robot computes the new path at every point, it can avoid the obstacle successfully during the navigation. The experimental results of the robot navigation are included in this paper.

  • PDF

Planning A Customer Transportation System Operation using Simulation (시뮬레이션을 이용한 고객 수송 시스템 운영 방안 수립)

  • Lee, Y.J.;Kong, M.C.;Yoon, S.Y.;Jeon, T.B.
    • Journal of Industrial Technology
    • /
    • v.37 no.1
    • /
    • pp.5-11
    • /
    • 2017
  • The purpose of this research is to propose an efficient loop line operation plan for customer transportation in a new theme park. Based on the expected customer arrivals, customer loading/unloading methods, and scheduled/non-scheduled departure schemes, movement time between stations etc., we have performed indepth analyses and derived the best optimal policy. Our results show that, over all, the operation with separate loading/unloading doors and scheduled departure is preferred to the other options. We then derived the optimal number of trains and cars meeting minimal customer unsatisfaction with low cost for each season.

Stochastic FMECA Assessment for Optimal RCM of Combustion-Turbine Generating Unit (복합화력발전기의 신뢰도 기반 유지보수를 위한 확률론적 FMECA 평가)

  • Joo, Jae-Myung;Lee, Seung-Hyuk;Shin, Jun-Seok;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.254-259
    • /
    • 2007
  • PM(Preventive Maintenance) can avail the generating unit to reduce cost and gain more profit in a competitive supply-side power market. So, it is necessary to perform reliability analysis on the power systems in which reliability is essential. Thus, to schedule optimal PM planning based on reliability that is defined RCM(Reliability-Centered Maintenance), FMECA(Failure Mode Effects and Criticality Analysis) assessment is very important. Therefore, in this paper, the procedure of FMECA assessment for optimal RCM is proposed by probabilistic approach using real historical failure data of combustion-turbine generators in Korean power systems. The stochastic FMECA is performed based on the effects of probable failure modes of combustion-turbine generating unit.

Optimal replacement of biomass for maximizing gas production

  • Lee, Hwa-Ki
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.10 no.2
    • /
    • pp.54-64
    • /
    • 1985
  • Biomass conversion processes have the potential for satisfying approximately 25% of the national demand for methane gas. At the current time very littel analytical work has been done to optimally design and operate the production facilities associated with these processes. This study was motivated by the high cost of these proposed systems. The biomass in storage decays (exponentially) with time while the batch methane production rate decreases (exponentially) over time. The basic problem is to determine the optimal residence times for batches in the anaerobic degester to maximize total production over a fixed planning horizon. The analysis characteries the form of the optimal policy and presents efficient algorithm for obtaining this solution.

  • PDF

A study on the Optimal Operation of Distirbution System Using the Modified Block Model Method (수정블럭 모델 법에 의한 배전계통의 최적운용에 관한 연구)

  • 송길영;홍상은;김재영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.4
    • /
    • pp.231-239
    • /
    • 1987
  • Distribution system is one of large and complicated sytem, consisted of a great number of components. Therefore efficient operation based on precise analysis and computation methods is indispensable accommodating growing loads. This paper describes an optimal operation problem to relieve overload flow in radial distribution systems by using modified block model. The problem is formulated as a network problem of synthesizing the optimal spanning tree in a graph, branch and bound method is used for the optimization. Especially modified block model proposed in this paper is validated more practical than conventional model. These methods can be applied to two types of distribution system problems such as, 1) planning problem to check the capability of relieving overload at normal rating, 2) emergency operation problem to determine switching scheme for minimizing customer loads affected by a fault. Examples of application to these problems are discussed.

  • PDF

A Knowledge-based System for Assembly Process Planning (조립 공정계획을 위한 지식기반 시스템)

  • Park, Hong-Seok;Son, Seok-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.29-39
    • /
    • 1999
  • Many industrial products can be assembled in various sequences of assembly operations. To save time and cost in assembly process and to increase the quality of products, it is very important to choose an optimal assembly sequence. In this paper, we propose a methodology that generates an optimal assembly sequence by using the knowledge of experts. First, a product is divided into several sub-assemblies. Next, the disassembly sequences of sub-assembly are generated using disassembly rules and special information can be extracted through the disassembly process. By combining every assembly sequence of sub-assemblies, we can generate all the possible assembly sequences of a product. Finally, the expert system evaluates all the possible assembly sequences and finds an optimal assembly sequence. It can be achieved under consideration of the parameters such as assembly operation, tool change, safety of part. basepart location, setup change, distance, and orientation. The developed system is applied to UBR(Unit Bath Room) example.

  • PDF