• 제목/요약/키워드: optimal model of transportation

Search Result 332, Processing Time 0.029 seconds

The Land Use-Transportation Model with Taste Heterogeneity (행태의 다양성을 고려한 토지이용 - 교통모형의 개발)

  • 김익기
    • Journal of Korean Society of Transportation
    • /
    • v.9 no.2
    • /
    • pp.87-100
    • /
    • 1991
  • 1960년 초부터 토지이용과 교통의 상관관계를 계량적으로 설명하고자 하는 연구가 진행되어 왔다. 이러한 연구는 경제이론을 배경으로 하여 개발된 McKinnon-Type 모형과 Mills-Type 모형, 그리고 경제학이 반영되어있지 않은 Lowry-Type 모형으로 크게 대별할 수 있다. 이제까지의 이러한 연구는 각 가정의 주거입지선정과 직장선정에 있어서 취향의 다양성(taste heterogeneity)을 고려하여 있지않고 있어 본 연구에서는 로짓모형을 이용하여 Alonso(1964) 모형을 더욱 발전시켜 토지이용-교통의 일반균형 모형(general equilibrium model)을 개발하였다. 이 통계적 토지이용-교통모형은 완전 경쟁하의 일반균형상태에서 주택임대료, 노동력임금, 상품가격이 내생적으로 산출되어지며, 동시에 효율적인 교통체계하에서 일반균형상태의 생산량과 생산부지 그리고 주거수와 주거부지가 어떻게 분배되는지를 내생적으로 결정한다. 이논문에서 효율적인 교통체계라함은 해당 죤에서 도로에 사용된 토지의 임대료가 교통체증비용의 전통행량에 대한 합과 동일하도록 하는 최적교통체증정도(optimal congestion level)을 유지할 수 있는 도로체계를 뜻한다. 또한 비효율적 교통체계하에서는 토지 이용에 왜곡이 생겨서 전체적 비용의 상승으로 각 국민 혹은 각 주민이 생활에서 얻을 수 있는 효용가치가 떨어짐을 분석할 수도 있다.

  • PDF

A Design for Optimal Models of Inventory-Distribution System with Back-Ordered Case (부재고를 갖는 재고.수송시스템의 최적모형설계)

  • 우태희;조남호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.25-36
    • /
    • 1997
  • The purpose of this paper is to structure a new integrated model that can minimize the total cost for the transportation and inventory systems between m origin points, where origin i has a supply of a commodity, such as distribution centers or warehouses, and n destination points, where destination j requires the commodity. In this case, demands of the destination points are assumed random variables which have a known probability distribution. We will find optimal distribution centers which transport the commodity to the destination points and suggest optimal inventory policy to the selected distribution center which find the optimal pair $$ and safety stock level that minimize total cost with back-ordered case. This new model is formulated as a 0-1 nonlinear integer programming problem. To solve the problem, this paper proposes heuristic computational procedures and program and provides numerical examples.

  • PDF

A Vehicle Routing Model for Multi-Supply Centers Based on Lp-Distance (일반거리산정방법을 이용한 다-물류센터의 최적 수송경로 계획 모델)

  • Hwang, Heung-Suk
    • IE interfaces
    • /
    • v.11 no.1
    • /
    • pp.85-95
    • /
    • 1998
  • This study is focussed on an optimal vehicle routing model for multi-supply centers in two-echelon logistic system. The aim of this study is to deliver goods for demand sites with optimal decision. This study investigated an integrated model using step-by-step approach based on relationship that exists between the inventory allocation and vehicle routing with restricted amount of inventory and transportations such as the capability of supply centers, vehicle capacity and transportation parameters. Three sub-models are developed: 1) sector-clustering model, 2) a vehicle-routing model based on clustering and a heuristic algorithm, and 3) a vehicle route scheduling model using TSP-solver based on genetic and branch-and-bound algorithm. Also, we have developed computer programs for each sub-models and user interface with visualization for major inputs and outputs. The application and superior performance of the proposed model are demonstrated by several sample runs for the inventory-allocation and vehicle routing problems.

  • PDF

Exercising The Traditional Four-Step Transportation Model Using Simplified Transport Network of Mandalay City in Myanmar (미얀마 만달레이시의 단순화된 교통망을 이용한 전통적인 4단계 교통 모델에 관한 연구)

  • Wut Yee Lwin;Byoung-Jo Yoon;Sun-Min Lee
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.257-269
    • /
    • 2024
  • Purpose: The purpose of this study is to explain the pivotal role of the travel forecasting process in urban transportation planning. This study emphasizes the use of travel forecasting models to anticipate future traffic. Method: This study examines the methodology used in urban travel demand modeling within transportation planning, specifically focusing on the Urban Transportation Modeling System (UTMS). UTMS is designed to predict various aspects of urban transportation, including quantities, temporal patterns, origin-destination pairs, modal preferences, and optimal routes in metropolitan areas. By analyzing UTMS and its operational framework, this research aims to enhance an understanding of contemporary urban travel demand modeling practices and their implications for transportation planning and urban mobility management. Result: The result of this study provides a nuanced understanding of travel dynamics, emphasizing the influence of variables such as average income, household size, and vehicle ownership on travel patterns. Furthermore, the attraction model highlights specific areas of significance, elucidating the role of retail locations, non-retail areas, and other locales in shaping the observed dynamics of transportation. Conclusion: The study methodically addressed urban travel dynamics in a four-ward area, employing a comprehensive modeling approach involving trip generation, attraction, distribution, modal split, and assignment. The findings, such as the prevalence of motorbikes as the primary mode of transportation and the impact of adjusted traffic patterns on reduced travel times, offer valuable insights for urban planners and policymakers in optimizing transportation networks. These insights can inform strategic decisions to enhance efficiency and sustainability in urban mobility planning.

A Study on Sea Trial Test Scenario for Estimation of Hydrodynamic Rotary Derivatives (선수동요 동유체마력 추정을 위한 시운전)

  • Yoon, Hyeon-Kyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.50-58
    • /
    • 2006
  • Free running model tests gives us only maneuvering indices not hydrodynamic derivatives. For this reason, system identification method has been applied to the measured data to identify mathematical model describing hydrodynamic force. However It is difficult to obtain complete set of maneuvering derivatives because of strong correlation of sway velocity and yaw rate. Therefore, in this paper, we assumed that sway velocity related coefficients would be obtained by oblique towing test. and then proposed new procedure to estimate yaw related coefficients. To do this, correlation and regression analyses were carried out to establish modified model and estimate maneuvering derivatives. Also D-optimal rudder input scenario was found based on the modified model and confirmed the validity of its sufficient richness as a input scenario.

Development of Model for Optimal Concession Period in PPPs Considering Traffic Risk (교통량 위험을 고려한 도로 민간투자사업 적정 관리운영기간 산정 모형 개발)

  • KU, Sukmo;LEE, Seungjae
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.5
    • /
    • pp.421-436
    • /
    • 2016
  • Public-Private-Partnerships tend to be committed high project development cost and recover the cost through future revenue during the operation period. In general, long-term concession can bring on more revenue to private investors, but short-term concession less revenue due to the short recovering opportunities. The concession period is usually determined by government in advance or by the private sectors's proposal although it is a very crucial factor for the PPPs. Accurate traffic forecasting should be most important in planing and evaluating the operation period in that the forecasted traffic determines the project revenue with user fees in PPPs. In this regards, governments and the private investors are required to consider the traffic forecast risk when determining concession period. This study proposed a model for the optimal concession period in the PPPs transportation projects. Monte Carlo simulation was performed to find out the optimal concession period while traffic forecast uncertainty is considered as a project risk under the expected return of the private sector. The simulation results showed that the optimal concession periods are 17 years and 21 years at 5.5% and 7% discount level, respectively. This study result can be applied for the private investors and/or any other concerned decision makers for PPPs projects to set up a more resonable concession period.

Outbound Air Travel Demand Forecasting Model with Unobserved Regional Characteristics (미관찰 지역 특성을 고려한 내국인 국제선 항공수요 추정 모형)

  • YU, Jeong Whon;CHOI, Jung Yoon
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.141-154
    • /
    • 2018
  • In order to meet the ever-increasing demand for international air travel, several plans are underway to open new airports and expand existing provincial airports. However, existing air demand forecasts have been based on the total air demand in Korea or the air demand among major cities. There is not much forecast of regional air demand considering local characteristics. In this study, the outbound air travel demand in the southeastern region of Korea was analyzed and the fixed-effects model using panel data was proposed as an optimal model that can reflect the inherent characteristics of metropolitan areas which are difficult to observe in reality. The results of model validation show that panel data analysis effectively addresses the spurious regression and unobserved heterogeneity that are difficult to handle in a model using only a few macroeconomic indicators with time series characteristics. Various statistical validation and conformance tests suggest that the fixed-effects model proposed in this study is superior to other econometric models in predicting demand for international demand in the southeastern region.

Approximate Optimization Design Considering Automotive Wheel Stress (자동차용 휠의 응력을 고려한 근사 최적 설계)

  • Lee, Hyunseok;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.302-307
    • /
    • 2015
  • The automobile is an important means of transportation. For this reason, the automotive wheel is also an important component in the automotive industry because it acts as a load support and is closely related to safety. Thus, the wheel design is a very important safety aspect. In this paper, an optimal design for minimizing automotive wheel stress and increasing wheel safety is described. To study the optimal design, a central composite design (CCD) and D-optimal design theory are applied, and the approximate function using the response surface method (RSM) is generated. The optimal solutions using the non-dominant sorting genetic algorithm (NSGA-II) are then derived. Comparing CCD and D-optimal solution accuracy and verified the CCD can deduce more accuracy optimal solutions.

A Stochastic Transit Assignment Model on Railway Network (철도 네트워크에서의 확률적 통행 배정 모형 연구)

  • Park, Bum-Hwan;Kim, Chung-Soo;Rho, Hag-Lae
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1222-1230
    • /
    • 2010
  • This study is about developing a transit assignment model on railway network. Current transit assignment models are mainly focused on road or urban transportation so that these models, for example, transit assignment model based on optimal strategy generates unrealistic transit assignment. Especially, since the advent of KTX, more passengers are using the transfer route containing KTX but most transit assignment models have a shortcoming that transfer is not considered or is overestimated. We present a new stochastic transit assignment model based on LOGIT considering transfer resistance.

  • PDF

Development of Optimal Bus Dispatch Simulation for Greenhouse Gas Reduction

  • Jung, Sang Won;Cho, Kyu-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.141-148
    • /
    • 2022
  • Global climate change caused by greenhouse gases(GHG) is getting serious. To prevent this, countries around the world are regulating GHG emissions. Korea has decided to reduce GHG emissions by 37% compared to BAU (Business As Usual) by 2030. The transportation sector accounted for 18.58% of the domestic GHG emission, and roads accounted for 93.75% of the total. Public transportation is also included in the target of GHG reduction, and this study was conducted to reduce GHG emissions of bus public transportation, which can reduce GHG emissions while reducing the cost of road transportation. In this study, a simulation was conducted to predict the optimal GHG emission compared to the waiting time of passengers by adjusting the bus dispatch interval by implementing a greenhouse gas simulation model using Any Logic. If a more precise model is implemented in the future, it is expected that it will be used to reduce bus GHG emissions.