• Title/Summary/Keyword: optimal for motion

Search Result 859, Processing Time 0.024 seconds

Optimal Cutting Condition of Rough Cutting Using Trochoidal Motion (Trochoidal 방식을 이용한 황삭가공의 최적조건)

  • Bong, Ha Yoon;Kim, Moon Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.13-19
    • /
    • 2017
  • In modern industry, the machining process is very important for manufacturing various products. More than 80% of machining processes apply rough cutting. The target of this study is to establish the optimal condition of rough cutting using trochoidal motion for improving productivity. For research, the range of cutting conditions is defined by trochoidal motion. The cutting time and tolerance are measured and evaluated according to the cutting conditions of machining. Experimental data are utilized for comparing trochoidal motion and contouring. It is found that the cutting time of trochoidal motion is two times less than that of contouring with optimal cutting conditions. To conclude, trochoidal motion for rough cutting under appropriate cutting conditions improves productivity and shortens processing time significantly.

Optimal Search Patterns for Fast Block Matching Motion Estimation (고속 블록정합 움직임 추정을 위한 최적의 탐색 패턴)

  • 임동근;호요성
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.39-42
    • /
    • 2000
  • Motion estimation plays an important role for video coding. In this paper, we derive optimal search patterns for fast block matching motion estimation. By analyzing the block matching algorithm as a function of block shape and size, we can find an optimal search pattern for initial motion estimation. The proposed idea, which has been verified experimentally by computer simulations, can provide an analytical basis for the current MPEG-2 proposals. In order to choose a more compact search pattern for BMA, we exploit the statistical relationship between the motion and the frame difference of each block.

  • PDF

Optimal Geometric Path and Minimum-Time Motion for a Manipulator Arm (로봇팔의 최적 기하학적 경로 및 시간최소화 운동)

  • Park, Jong-Keun;Han, Sung-Hyun;Kim, Tae-Han;Lee, Sang-Tak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.204-213
    • /
    • 1999
  • This paper suggests a numerical method of finding optimal geometric path and minimum-time motion for a manipulator arm. To find the minimum-time motion, the optimal geometric path is searched first, and the minimum-time motion is searched on this optimal path. In the algorithm finding optimal geometric path, the objective function is minimizing the combination of joint velocities, joint-jerks, and actuator forces as well as avoiding several static obstacles, where global search is performed by adjusting the seed points of the obstacle models. In the minimum-time algorithm, the traveling time is expressed by the linear combinations of finite-term quintic B-splines and the coefficients of the splines are obtained by nonlinear programming to minimize the total traveling time subject to the constraints of the velocity-dependent actuator forces. These two search algorithms are basically similar and their convergences are quite stable.

  • PDF

Obstacle-Free Optimal Motions of a Manipulator Arm Using Penetration Growth Distance (침투성장거리를 이용한 로봇팔의 장애물회피 최적운동)

  • Park, Jong-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.116-126
    • /
    • 2001
  • This paper suggests a numerical method to find optimal geometric path and minimum-time motion for a spatial 6-link manipulator arm (PUMA 560 type). To find a minimum-time motion, the optimal geometric paths minimizing 2 different dynamic performance indices are searched first, and the minimum-time motions are searched on these optimal paths. In the algorithm to find optimal geometric paths, the objective functions (performance indices) are selected to minimize joint velocities, actuator forces or the combinations of them as well as to avoid one static obstacle. In the minimum-time algorithm the traveling time is expressed by the power series including 21 terms. The coefficients of the series are obtained using nonlinear programming to minimize the total traveling time subject to the constraints of velocity-dependent actuator forces.

  • PDF

Optimal Design for Parallelogram Type Flexure Hinge (Parallelogram형 Flexure Hinge 에 의한 Motion Stage 의 최적 설계)

  • Choi, Ju Yong;Eom, Sang In;Kim, Jung Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.107-111
    • /
    • 2015
  • This paper proposes an optimal design for a precision motion stage employing a parallelogram flexure hinge. The voltage applied to the piezo element produces motion that is amplified through a 3-stage amplification structure. Especially, instead of the generally used conic section flexure hinge a parallelogram shaped flexure hinge is used that improves the flexibility of the lever. An Finite Element Analysis is performed on each motion stage lever where optimal design was achieved using Response Surface Methodology(RSM).

Time-optimal motions of robotic manipulators with constraints (제한조건을 가진 로봇 매니퓰레이터에 대한 최적 시간 운동)

  • 정일권;이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.293-298
    • /
    • 1993
  • In this paper, methods for computing the time-optimal motion of a robotic manipulator are presented that considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. The optimization problem can be reduced to a search for the time-optimal path in the n-dimensional position space. These paths are further optimized with a local path optimization to yield a global optimal solution. Time-optimal motion of a robot with an articulated arm is presented as an example.

  • PDF

An Optimal Trajectory Planning for Redundant Robot Manipulators Based on Velocity Decomposition (속도분리를 이용한 여유자유도 로봇의 최적 경로계획)

  • 이지홍;원경태
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.836-840
    • /
    • 1999
  • Linear motion and angular motion in task space are handled separately in joint velocity planning for redundant robot manipulators. In solving inverse kinematic equations with given joint velocity limits, we consider the order of priority for linear motion and angular motion. The proposed method will be useful in such applications where only linear motions are important than angular motions or vice versa.

  • PDF

Development of spine motion analyzer (척추운동 분석기의 개발)

  • 김영은;노병현;유진환;안정호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.137-146
    • /
    • 1997
  • External linkage type spine motion analysis was developed for relative trunk motion respect to the pelvis. A special programs for calculation of the relative angular motion and for graphical display were also developed. The developed device assured its accuracy and conveniency after application to 15 normal vol- unteers. Compare to the normal subjects, 18 patients treated with fixations and decompression surgery showed relatively large coupling motion. Optimal trajectory of the trunk motion derived from mathematical model in flexion and extension matched well with measurement for normal subjects.

  • PDF

Optimal Underwater Coverage of a Cellular Region by Autonomous Underwater Vehicle Using Line Sweep Motion

  • Choi, Myoung-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.1023-1033
    • /
    • 2012
  • An underwater planar covering problem is studied where the coverage region consists of polygonal cells, and line sweep motion is used for coverage. In many subsea applications, sidescan sonar has become a common tool, and the sidescan sonar data is meaningful only when the sonar is moving in a straight line. This work studies the optimal line sweep coverage where the sweep paths of the cells consist of straight lines and no turn is allowed inside the cell. An optimal line sweep coverage solution is presented when the line sweep path is parallel to an edge of the cell boundary. The total time to complete the coverage task is minimized. A unique contribution of this work is that the optimal sequence of cell visits is computed in addition to the optimal line sweep paths and the optimal cell decomposition.

Optimal Path Generation of Flight Motion Simulator for Hardware in the Loop Simulation (고기동 유도탄 HILS를 위한 비행자세모의기 최적 경로 산출)

  • Kim Ki Seung;Ra Won Sang
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.117-119
    • /
    • 2004
  • An optimal flight motion simulator path generation method is proposed for hardware in the loop simulation of high maneuverable missile. The proposed method consists of open loop and closed loop path calculation algorithm based on the energy optimal control strategies. The optimal angle command is able to protect the simulator from high acceleration shock at initial control phase.

  • PDF