• Title/Summary/Keyword: optimal efficiency control

Search Result 754, Processing Time 0.027 seconds

Target Operation Voltage Guidelines Considering Voltage Level in Each Voltage Control area by Applying Optimization Technique Through EMS Data Observation (EMS data 분석 및 최적화 기법을 적용한 제어지역별 목표운전전압 제안)

  • Sung, Ung;Kim, Jae-Won;Kim, Tae-Gyun;Lee, Byong-Jun;Jung, Eung-Soo;Cho, Jong-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.671-678
    • /
    • 2009
  • This paper presents target operation voltage guidelines of each voltage control area considering both voltage stability and economical efficiency in real power system. EMS(Energy Management System) data, Real-time simulator, shows not only voltage level but lots of information about real power system. Also this paper performs optimal power flow calculation of three objective functions to propose the best target operation voltage. objective function of interchange power flow maximum and active power loss minimization stand for economical efficiency index and reactive power reserve maximum objective unction represents stability index. Then through simulation result using optimazation technique, the most effective objective function is chosen. To sum up, this paper divides voltage control area into twelve considering electric distance characteristics and estimate or voltage level by the passage of time of EMS peak data. And through optimization technique target operation voltage of each voltage control area is estimated and compare heir result. Then it is proposed that the best scenario to keep up voltage stability and maximize economical efficiency in real power system.

The Characteristic of Control Response of BLDC using a Fuzzy PI Controller (퍼지 PI 제어기를 사용한 BLDC 제어 응답특성)

  • Yoon, Yong-Ho;Kim, Jae-Moon;Kim, Duk-Heon;Won, Chung-Yuen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1978-1983
    • /
    • 2011
  • BLDC motor is used in a wide variety of industrial and servo applications. Its features and advantages mainly consist in high value of torque/inertia ratio, high efficiency with speed range and high dynamic performance. This paper deals with the speed control of a trapezoidal type brushless DC motor using Fuzzy PI controller. The conventional PI controller has been widely used in industrial applications. If we select a optimal PI control gain, the PI controller shows very good control performance. But it is very difficult to find the optimal PI control gain. Fuzzy control does not need any model of plant and is basically adaptive and gives robust performance for plant parameter variation. Therefore the combinations of conventional PI controller and fuzzy controller seem to be very effective. This paper deals with PI controller with 4-rule based fuzzy controller. The proposed fuzzy PI controller increases the control performance of the conventional PI controller. Simulation and experimental results show that fuzzy PI controller has a good robustness regarding the improper tuned PI controller.

A study of the train traffic optimal control system in a circular metro line (도시형 순환 열차에서 운전 최적제어 시스템에 관한 연구)

  • Hong, Hyo-Sik;Ryu, Kwang-Gyun;Song, Noon-Suck
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.236-246
    • /
    • 2003
  • This paper is implemented a control algorithm in order to be stable and minimized to entire train traffic system at delayed case. Signal ing system is described wi th algebraic equations given for train headway, Discrete-event simulation principles are reviewed and a demonstration block signaling model using the technique is implemented. Train congestion at station entrance for short headway operation is demonstrated and the propagation of delays along a platform of trains from any imposed delay to the leading train is also shown. A rail way signaling system is by nature a distributed operation with event triggered at discrete intervals. Although the train kinematic variables of position, velocity, and acceleration are continually changing, the changes are triggered when the trains pass over section boundaries and arrive at signals and route switches. This paper deals with linear-mode1ing, stability and optimal control for the traffic on such metro line of the model is reconstructed in order to adapt the circuits. This paper propose optimal control laws wi th state feedback ensuring the stability of the modeled system for circuits. Simulation results show the benefit to be expected from an efficient traffic control. The main results are summarized as follows: 1. In this paper we develop a linear model describing the traffic for both loop lines, two state space equations have been analyzed. The first one is adapted to the situation where a complete nominal time schedule is available while second one is adapted when only the nominal time interval between trains is known, in both cases we show the unstability of the traffic when the proceeding train is delayed following properties, - They are easily implemented at law cost on existing lines. - They ensure the exponetial stability of loop system. 2. These control laws have been tested on a traffic simulation software taking into the non-linearites and the physical constraints on a metro line. By means of simulation, the efficiency of the proposed optimal control laws are shown.

  • PDF

Adaptive-FNIS Control for Efficiency Optimization of IPMSM Drive (IPMSM 드라이브의 효율 최적화를 위한 Adaptive-FNIS 제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.122-124
    • /
    • 2008
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. In order to maximize the efficiency in such applications, this paper proposes the Adaptive-FNIS(Fuzzy Neural Network Inference System). The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal d-axis current $i_d$. This paper considers the parameter variation about the motor operation. The operating characteristics controlled by efficiency optimization control are examined in detail.

  • PDF

High Efficiency Control of SRM with Maximum Energy Conversion Method (최대 에너지 변환기법에 의한 SRM 고효율 운전)

  • Kang Y. J.;Lee D. H.;Oh S. G.;Park S. J.;Ahn J. W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.37-40
    • /
    • 2001
  • This paper is suggested an optimal switching angle of a switched reluctance motor drive system for maximum energy ratio. A new magnetizing method with a low-frequency increasing the energy conversion ratio that is related to the efficiency of motor is proposed As results, it improves the efficiency about 2[$\%$]. And a torque ripple is also reduced compared with that of the conventional switching angle magnetizing approach. In order to start softly regardless of a large ripple torque, the profile of phase current is predicted and current control mode was adapted when it is operated under the starting speed.

  • PDF

Combustion Pressure Monitoring System for Engine Control; By Simultaneous and Continuous Measuring of All Cylinders

  • Mihara, Y.;Maruyama, Y.;Okada, Y.;Kido, H.;Nishida, O.;Fujita, H.;Ito, M.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.269-276
    • /
    • 2004
  • A marine diesel engine should realize optimal efficiency operation while reducing NOx. Fuel injection systems by electronic control can become effective means for that. Although it would be able to get more precise engine control compared to the mechanical injection system, it needs some accurate and instant information in order to bring its ability into full play while sailing on the sea. Very important information of them is shaft torque and continuous combustion pressure of all cylinders. The system presented in this report can deliver those data.

Optimal Control Scheme for Two-Stage Direct Power Converter (2단계 직접형 전력변환시스템의 최적제어기법 고찰)

  • Cho, Choon-Ho;Mo, Dong-Yeong;Lee, Sang-Chul;Choi, Chang-Young;Lee, Gun-Sik;Kim, Tae-Woong;Park, Gwi-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.158-159
    • /
    • 2010
  • Two-Stage Direct Power Converter(TSDPC) has many merits that possible bidirectional power flow, input power factor own control and system using imaginary DC-link. But TSDPC has some demerits that need many switching devices and switching loss. This paper suggest optimal TSDPC control scheme for improvement for switching loss part by changing the space vector approval times. This paper is verified that 9% improvement in switching efficiency and proposed system has lower harmonic of input currents and output voltage.

  • PDF

The Grabal Path-Planning for Mobil robot (이동로봇의 전역경로설정방법)

  • Jeong, Heon;Park, Ki-Du;Choi, Han-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.715-718
    • /
    • 1998
  • There are a lot of paths which connect between the mobile robot and the goat point. To make a mobile robot arrive at the goal point fastly, The optimal path is needed and a path palnning is necessary. In this paper, we propose a new method of path planning to find a path for mobile robot. It is based on Ginetic Algorithm for serching the optimal grobal path planning. Simulations show the efficiency for the grobal path planning.

  • PDF

A New Algorithm for Optimal Real and Reactive Power Dispatch (최적유효 및 무요전력배분을 위한 신 앨고리즘)

  • Park, Young-Moon;Lee, Kwang-Yon
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.4
    • /
    • pp.145-154
    • /
    • 1983
  • This paper presents a new method for optimal real and reactive power dispatch for the economic operation of a power system. Unlike the usual approach of minimizing the transmission loss, this method minimizes the total production cost not only for the real power optimization problem, but also for the reactive power optimization. The control variables are real power generation of units for real power optimization, and reactive power optimization. The constraints are the operating limits on these control variables and the limits on the bus voltages. Methematical models are developed to represent the sensitivity relationships between dependent and control variables for both real and reactive power optimization modules, and thus eliminate the use of B-coefficients. In order to handle many functional inequality constraints, a modified version of the gradient projection method is developed for optimization procedure, and has shown a remarkable advantage in computation efficiency.

  • PDF

Application of machine learning in optimized distribution of dampers for structural vibration control

  • Li, Luyu;Zhao, Xuemeng
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.679-690
    • /
    • 2019
  • This paper presents machine learning methods using Support Vector Machine (SVM) and Multilayer Perceptron (MLP) to analyze optimal damper distribution for structural vibration control. Regarding different building structures, a genetic algorithm based optimization method is used to determine optimal damper distributions that are further used as training samples. The structural features, the objective function, the number of dampers, etc. are used as input features, and the distribution of dampers is taken as an output result. In the case of a few number of damper distributions, multi-class prediction can be performed using SVM and MLP respectively. Moreover, MLP can be used for regression prediction in the case where the distribution scheme is uncountable. After suitable post-processing, good results can be obtained. Numerical results show that the proposed method can obtain the optimized damper distributions for different structures under different objective functions, which achieves better control effect than the traditional uniform distribution and greatly improves the optimization efficiency.